9x25dillon's picture
Upload folder using huggingface_hub
0038247 verified
#!/Aur/bin/env python3
"""
Advanced Signal Processing and Modulation System
===============================================
This module implements comprehensive digital signal processing including:
- Multiple modulation schemes (BFSK, BPSK, QPSK, QAM16, OFDM, DSSS)
- Forward Error Correction (FEC) coding
- Framing, security, and watermarking
- Audio and IQ signal generation
- Visualization and analysis tools
Author: Assistant
License: MIT
"""
import binascii
import hashlib
import math
import struct
import time
import wave
from dataclasses import dataclass
from enum import Enum, auto
from pathlib import Path
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
import numpy as np
from scipy import signal as sp_signal
from scipy.fft import rfft, rfftfreq
try:
import matplotlib.pyplot as plt
HAS_MATPLOTLIB = True
except ImportError:
HAS_MATPLOTLIB = False
try:
import sounddevice as sd
HAS_AUDIO = True
except ImportError:
HAS_AUDIO = False
try:
from Crypto.Cipher import AES
from Crypto.Random import get_random_bytes
from Crypto.Protocol.KDF import PBKDF2
HAS_CRYPTO = True
except ImportError:
HAS_CRYPTO = False
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# =========================================================
# Enums and Configuration
# =========================================================
class ModulationScheme(Enum):
BFSK = auto()
BPSK = auto()
QPSK = auto()
QAM16 = auto()
AFSK = auto()
OFDM = auto()
DSSS_BPSK = auto()
class FEC(Enum):
NONE = auto()
HAMMING74 = auto()
REED_SOLOMON = auto() # stub
LDPC = auto() # stub
TURBO = auto() # stub
@dataclass
class ModConfig:
sample_rate: int = 48000
symbol_rate: int = 1200
amplitude: float = 0.7
f0: float = 1200.0 # BFSK 0
f1: float = 2200.0 # BFSK 1
fc: float = 1800.0 # PSK/QAM audio carrier (for WAV)
clip: bool = True
# OFDM parameters
ofdm_subc: int = 64
cp_len: int = 16
# DSSS parameters
dsss_chip_rate: int = 4800
@dataclass
class FrameConfig:
use_crc32: bool = True
use_crc16: bool = False
preamble: bytes = b"\x55" * 8 # 01010101 * 8
version: int = 1
@dataclass
class SecurityConfig:
password: Optional[str] = None # AES-GCM if provided
watermark: Optional[str] = None # prepended SHA256[0:8]
hmac_key: Optional[str] = None # HMAC-SHA256 appended
@dataclass
class OutputPaths:
wav: Optional[Path] = None
iq: Optional[Path] = None
meta: Optional[Path] = None
png: Optional[Path] = None
# =========================================================
# Utility Functions
# =========================================================
def now_ms() -> int:
return int(time.time() * 1000)
def crc32_bytes(data: bytes) -> bytes:
return binascii.crc32(data).to_bytes(4, "big")
def crc16_ccitt(data: bytes) -> bytes:
poly, crc = 0x1021, 0xFFFF
for b in data:
crc ^= b << 8
for _ in range(8):
crc = ((crc << 1) ^ poly) & 0xFFFF if (crc & 0x8000) else ((crc << 1) & 0xFFFF)
return crc.to_bytes(2, "big")
def to_bits(data: bytes) -> List[int]:
return [(byte >> i) & 1 for byte in data for i in range(7, -1, -1)]
def from_bits(bits: Sequence[int]) -> bytes:
if len(bits) % 8 != 0:
bits = list(bits) + [0] * (8 - len(bits) % 8)
out = bytearray()
for i in range(0, len(bits), 8):
byte = 0
for b in bits[i:i+8]:
byte = (byte << 1) | (1 if b else 0)
out.append(byte)
return bytes(out)
def chunk_bits(bits: Sequence[int], n: int) -> List[List[int]]:
return [list(bits[i:i+n]) for i in range(0, len(bits), n)]
def safe_json(obj: Any) -> str:
import json
def enc(x):
if isinstance(x, (np.floating,)):
return float(x)
if isinstance(x, (np.integer,)):
return int(x)
if isinstance(x, (np.ndarray,)):
return x.tolist()
if isinstance(x, complex):
return {"real": float(x.real), "imag": float(x.imag)}
return str(x)
return json.dumps(obj, ensure_ascii=False, indent=2, default=enc)
# =========================================================
# FEC Implementation
# =========================================================
def hamming74_encode(data_bits: List[int]) -> List[int]:
"""Hamming (7,4) encoding"""
if len(data_bits) % 4 != 0:
data_bits = data_bits + [0] * (4 - len(data_bits) % 4)
out = []
for i in range(0, len(data_bits), 4):
d0, d1, d2, d3 = data_bits[i:i+4]
p1 = d0 ^ d1 ^ d3
p2 = d0 ^ d2 ^ d3
p3 = d1 ^ d2 ^ d3
out += [p1, p2, d0, p3, d1, d2, d3]
return out
def hamming74_decode(coded_bits: List[int]) -> Tuple[List[int], int]:
"""Hamming (7,4) decoding with error correction"""
if len(coded_bits) % 7 != 0:
coded_bits = coded_bits + [0] * (7 - len(coded_bits) % 7)
decoded = []
errors_corrected = 0
for i in range(0, len(coded_bits), 7):
r = coded_bits[i:i+7] # received codeword
p1, p2, d0, p3, d1, d2, d3 = r
# Calculate syndrome
s1 = p1 ^ d0 ^ d1 ^ d3
s2 = p2 ^ d0 ^ d2 ^ d3
s3 = p3 ^ d1 ^ d2 ^ d3
syndrome = s1 + 2*s2 + 4*s3
# Correct single-bit errors
if syndrome != 0:
errors_corrected += 1
if syndrome <= 7:
r[syndrome - 1] ^= 1 # flip the error bit
# Extract data bits
decoded.extend([r[2], r[4], r[5], r[6]]) # d0, d1, d2, d3
return decoded, errors_corrected
def fec_encode(bits: List[int], scheme: FEC) -> List[int]:
if scheme == FEC.NONE:
return list(bits)
elif scheme == FEC.HAMMING74:
return hamming74_encode(bits)
elif scheme in (FEC.REED_SOLOMON, FEC.LDPC, FEC.TURBO):
raise NotImplementedError(f"{scheme.name} encoding not implemented")
else:
raise ValueError("Unknown FEC scheme")
def fec_decode(bits: List[int], scheme: FEC) -> Tuple[List[int], Dict[str, Any]]:
if scheme == FEC.NONE:
return list(bits), {"errors_corrected": 0}
elif scheme == FEC.HAMMING74:
decoded, errors = hamming74_decode(bits)
return decoded, {"errors_corrected": errors}
else:
raise NotImplementedError(f"{scheme.name} decoding not implemented")
# =========================================================
# Security and Framing
# =========================================================
def aes_gcm_encrypt(plaintext: bytes, password: str) -> bytes:
if not HAS_CRYPTO:
raise RuntimeError("pycryptodome required for encryption")
salt = get_random_bytes(16)
key = PBKDF2(password, salt, dkLen=32, count=200_000)
nonce = get_random_bytes(12)
cipher = AES.new(key, AES.MODE_GCM, nonce=nonce)
ciphertext, tag = cipher.encrypt_and_digest(plaintext)
return b"AGCM" + salt + nonce + tag + ciphertext
def aes_gcm_decrypt(encrypted: bytes, password: str) -> bytes:
if not HAS_CRYPTO:
raise RuntimeError("pycryptodome required for decryption")
if not encrypted.startswith(b"AGCM"):
raise ValueError("Invalid encrypted format")
data = encrypted[4:] # skip "AGCM" header
salt = data[:16]
nonce = data[16:28]
tag = data[28:44]
ciphertext = data[44:]
key = PBKDF2(password, salt, dkLen=32, count=200_000)
cipher = AES.new(key, AES.MODE_GCM, nonce=nonce)
return cipher.decrypt_and_verify(ciphertext, tag)
def apply_hmac(data: bytes, hkey: str) -> bytes:
import hmac
key = hashlib.sha256(hkey.encode("utf-8")).digest()
mac = hmac.new(key, data, hashlib.sha256).digest()
return data + b"HMAC" + mac
def verify_hmac(data: bytes, hkey: str) -> Tuple[bytes, bool]:
if not data.endswith(b"HMAC"):
return data, False
# Find HMAC marker
hmac_pos = data.rfind(b"HMAC")
if hmac_pos == -1 or len(data) - hmac_pos != 36: # 4 + 32 bytes
return data, False
payload = data[:hmac_pos]
received_mac = data[hmac_pos + 4:]
import hmac
key = hashlib.sha256(hkey.encode("utf-8")).digest()
expected_mac = hmac.new(key, payload, hashlib.sha256).digest()
return payload, hmac.compare_digest(received_mac, expected_mac)
def add_watermark(data: bytes, wm: str) -> bytes:
return hashlib.sha256(wm.encode("utf-8")).digest()[:8] + data
def check_watermark(data: bytes, wm: str) -> Tuple[bytes, bool]:
if len(data) < 8:
return data, False
expected = hashlib.sha256(wm.encode("utf-8")).digest()[:8]
received = data[:8]
payload = data[8:]
return payload, received == expected
def frame_payload(payload: bytes, fcfg: FrameConfig) -> bytes:
header = struct.pack(">BBI", 0xA5, fcfg.version, now_ms() & 0xFFFFFFFF)
core = header + payload
tail = b""
if fcfg.use_crc32:
tail += crc32_bytes(core)
if fcfg.use_crc16:
tail += crc16_ccitt(core)
return fcfg.preamble + core + tail
def unframe_payload(framed: bytes, fcfg: FrameConfig) -> Tuple[bytes, Dict[str, Any]]:
if len(framed) < len(fcfg.preamble) + 7: # minimum frame size
return b"", {"error": "Frame too short"}
# Check preamble
if not framed.startswith(fcfg.preamble):
return b"", {"error": "Invalid preamble"}
data = framed[len(fcfg.preamble):]
# Parse header
if len(data) < 7:
return b"", {"error": "Header too short"}
sync, version, timestamp = struct.unpack(">BBI", data[:7])
if sync != 0xA5:
return b"", {"error": "Invalid sync byte"}
# Calculate payload length
tail_len = 0
if fcfg.use_crc32:
tail_len += 4
if fcfg.use_crc16:
tail_len += 2
if len(data) < 7 + tail_len:
return b"", {"error": "Frame too short for CRC"}
payload = data[7:-tail_len] if tail_len > 0 else data[7:]
# Verify CRCs
info = {"version": version, "timestamp": timestamp}
if fcfg.use_crc32:
expected_crc32 = crc32_bytes(data[:-tail_len])
received_crc32 = data[-tail_len:-tail_len+4] if fcfg.use_crc16 else data[-4:]
info["crc32_ok"] = expected_crc32 == received_crc32
if fcfg.use_crc16:
expected_crc16 = crc16_ccitt(data[:-2])
received_crc16 = data[-2:]
info["crc16_ok"] = expected_crc16 == received_crc16
return payload, info
def encode_text(text: str, fcfg: FrameConfig, sec: SecurityConfig, fec_scheme: FEC) -> List[int]:
"""Complete encoding pipeline"""
data = text.encode("utf-8")
# Apply watermark
if sec.watermark:
data = add_watermark(data, sec.watermark)
# Apply encryption
if sec.password:
data = aes_gcm_encrypt(data, sec.password)
# Frame the data
framed = frame_payload(data, fcfg)
# Apply HMAC
if sec.hmac_key:
framed = apply_hmac(framed, sec.hmac_key)
# Convert to bits and apply FEC
bits = to_bits(framed)
bits = fec_encode(bits, fec_scheme)
return bits
def decode_bits(bits: List[int], fcfg: FrameConfig, sec: SecurityConfig, fec_scheme: FEC) -> Tuple[str, Dict[str, Any]]:
"""Complete decoding pipeline"""
info = {}
try:
# Apply FEC decoding
decoded_bits, fec_info = fec_decode(bits, fec_scheme)
info.update(fec_info)
# Convert bits to bytes
framed = from_bits(decoded_bits)
# Verify HMAC
if sec.hmac_key:
framed, hmac_ok = verify_hmac(framed, sec.hmac_key)
info["hmac_ok"] = hmac_ok
if not hmac_ok:
return "", {**info, "error": "HMAC verification failed"}
# Unframe
data, frame_info = unframe_payload(framed, fcfg)
info.update(frame_info)
if "error" in frame_info:
return "", info
# Decrypt
if sec.password:
data = aes_gcm_decrypt(data, sec.password)
info["decrypted"] = True
# Check watermark
if sec.watermark:
data, wm_ok = check_watermark(data, sec.watermark)
info["watermark_ok"] = wm_ok
if not wm_ok:
return "", {**info, "error": "Watermark verification failed"}
# Decode text
text = data.decode("utf-8", errors="replace")
return text, info
except Exception as e:
return "", {**info, "error": str(e)}
# =========================================================
# Modulation Schemes
# =========================================================
class Modulators:
@staticmethod
def bfsk(bits: Sequence[int], cfg: ModConfig) -> np.ndarray:
"""Binary Frequency Shift Keying"""
sr, rb = cfg.sample_rate, cfg.symbol_rate
spb = int(sr / rb) # samples per bit
t = np.arange(spb) / sr
signal_blocks = []
for bit in bits:
freq = cfg.f1 if bit else cfg.f0
signal_blocks.append(cfg.amplitude * np.sin(2 * np.pi * freq * t))
if not signal_blocks:
return np.zeros(0, dtype=np.float32)
signal = np.concatenate(signal_blocks)
if cfg.clip:
signal = np.clip(signal, -1, 1)
return signal.astype(np.float32)
@staticmethod
def bpsk(bits: Sequence[int], cfg: ModConfig) -> Tuple[np.ndarray, np.ndarray]:
"""Binary Phase Shift Keying"""
sr, rb, fc = cfg.sample_rate, cfg.symbol_rate, cfg.fc
spb = int(sr / rb)
t = np.arange(spb) / sr
audio_blocks = []
iq_blocks = []
for bit in bits:
phase = 0.0 if bit else np.pi
# Audio signal (upconverted)
audio_blocks.append(cfg.amplitude * np.sin(2 * np.pi * fc * t + phase))
# IQ signal (baseband)
iq_symbol = cfg.amplitude * (np.cos(phase) + 1j * np.sin(phase))
iq_blocks.append(iq_symbol * np.ones(spb, dtype=np.complex64))
audio = np.concatenate(audio_blocks) if audio_blocks else np.zeros(0, dtype=np.float32)
iq = np.concatenate(iq_blocks) if iq_blocks else np.zeros(0, dtype=np.complex64)
if cfg.clip:
audio = np.clip(audio, -1, 1)
return audio.astype(np.float32), iq
@staticmethod
def qpsk(bits: Sequence[int], cfg: ModConfig) -> Tuple[np.ndarray, np.ndarray]:
"""Quadrature Phase Shift Keying"""
pairs = chunk_bits(bits, 2)
symbols = []
# Gray mapping: 00→(1+1j), 01→(-1+1j), 11→(-1-1j), 10→(1-1j)
for pair in pairs:
b0, b1 = (pair + [0, 0])[:2]
if (b0, b1) == (0, 0):
symbol = 1 + 1j
elif (b0, b1) == (0, 1):
symbol = -1 + 1j
elif (b0, b1) == (1, 1):
symbol = -1 - 1j
else: # (1, 0)
symbol = 1 - 1j
symbols.append(symbol / math.sqrt(2)) # normalize for unit energy
return Modulators._psk_qam_to_audio_iq(np.array(symbols, dtype=np.complex64), cfg)
@staticmethod
def qam16(bits: Sequence[int], cfg: ModConfig) -> Tuple[np.ndarray, np.ndarray]:
"""16-QAM modulation"""
quads = chunk_bits(bits, 4)
def gray_map_2bit(b0, b1):
# Gray mapping for 2 bits to {-3, -1, 1, 3}
val = (b0 << 1) | b1
return [-3, -1, 1, 3][val]
symbols = []
for quad in quads:
b0, b1, b2, b3 = (quad + [0, 0, 0, 0])[:4]
I = gray_map_2bit(b0, b1)
Q = gray_map_2bit(b2, b3)
symbol = (I + 1j * Q) / math.sqrt(10) # normalize for unit average power
symbols.append(symbol)
return Modulators._psk_qam_to_audio_iq(np.array(symbols, dtype=np.complex64), cfg)
@staticmethod
def _psk_qam_to_audio_iq(symbols: np.ndarray, cfg: ModConfig) -> Tuple[np.ndarray, np.ndarray]:
"""Convert PSK/QAM symbols to audio and IQ signals"""
sr, rb, fc = cfg.sample_rate, cfg.symbol_rate, cfg.fc
spb = int(sr / rb)
# Upsample symbols (rectangular pulse shaping)
i_data = np.repeat(symbols.real.astype(np.float32), spb)
q_data = np.repeat(symbols.imag.astype(np.float32), spb)
# Generate time vector
t = np.arange(len(i_data)) / sr
# Generate audio signal (upconverted)
audio = cfg.amplitude * (i_data * np.cos(2 * np.pi * fc * t) -
q_data * np.sin(2 * np.pi * fc * t))
# Generate IQ signal (baseband)
iq = (cfg.amplitude * i_data) + 1j * (cfg.amplitude * q_data)
if cfg.clip:
audio = np.clip(audio, -1, 1)
return audio.astype(np.float32), iq.astype(np.complex64)
@staticmethod
def afsk(bits: Sequence[int], cfg: ModConfig) -> np.ndarray:
"""Audio Frequency Shift Keying (same as BFSK)"""
return Modulators.bfsk(bits, cfg)
@staticmethod
def dsss_bpsk(bits: Sequence[int], cfg: ModConfig) -> np.ndarray:
"""Direct Sequence Spread Spectrum BPSK"""
# Simple PN sequence for spreading
pn_sequence = np.array([1, -1, 1, 1, -1, 1, -1, -1], dtype=np.float32)
sr = cfg.sample_rate
chip_rate = cfg.dsss_chip_rate
samples_per_chip = int(sr / chip_rate)
baseband_signal = []
for bit in bits:
bit_value = 1.0 if bit else -1.0
# Spread with PN sequence
spread_chips = bit_value * pn_sequence
# Upsample chips
for chip in spread_chips:
baseband_signal.extend([chip] * samples_per_chip)
baseband = np.array(baseband_signal, dtype=np.float32)
# Upconvert to carrier frequency
t = np.arange(len(baseband)) / sr
audio = cfg.amplitude * baseband * np.sin(2 * np.pi * cfg.fc * t)
if cfg.clip:
audio = np.clip(audio, -1, 1)
return audio.astype(np.float32)
@staticmethod
def ofdm(bits: Sequence[int], cfg: ModConfig) -> Tuple[np.ndarray, np.ndarray]:
"""Orthogonal Frequency Division Multiplexing"""
N = cfg.ofdm_subc
cp_len = cfg.cp_len
# Group bits for QPSK mapping on each subcarrier
symbol_chunks = chunk_bits(bits, 2 * N)
audio_blocks = []
iq_blocks = []
for chunk in symbol_chunks:
# Map bits to QPSK symbols
qpsk_symbols = []
bit_pairs = chunk_bits(chunk, 2)
for pair in bit_pairs:
b0, b1 = (pair + [0, 0])[:2]
if (b0, b1) == (0, 0):
symbol = 1 + 1j
elif (b0, b1) == (0, 1):
symbol = -1 + 1j
elif (b0, b1) == (1, 1):
symbol = -1 - 1j
else:
symbol = 1 - 1j
qpsk_symbols.append(symbol / math.sqrt(2))
# Pad to N subcarriers
while len(qpsk_symbols) < N:
qpsk_symbols.append(0j)
# IFFT to get time domain signal
freq_domain = np.array(qpsk_symbols[:N], dtype=np.complex64)
time_domain = np.fft.ifft(freq_domain)
# Add cyclic prefix
cyclic_prefix = time_domain[-cp_len:]
ofdm_symbol = np.concatenate([cyclic_prefix, time_domain])
# Scale to fit symbol rate timing
symbol_duration = int(cfg.sample_rate / cfg.symbol_rate)
repeat_factor = max(1, symbol_duration // len(ofdm_symbol))
upsampled = np.repeat(ofdm_symbol, repeat_factor)
# Generate audio (upconverted)
t = np.arange(len(upsampled)) / cfg.sample_rate
audio = cfg.amplitude * (upsampled.real * np.cos(2 * np.pi * cfg.fc * t) -
upsampled.imag * np.sin(2 * np.pi * cfg.fc * t))
audio_blocks.append(audio.astype(np.float32))
iq_blocks.append((cfg.amplitude * upsampled).astype(np.complex64))
audio = np.concatenate(audio_blocks) if audio_blocks else np.zeros(0, dtype=np.float32)
iq = np.concatenate(iq_blocks) if iq_blocks else np.zeros(0, dtype=np.complex64)
if cfg.clip:
audio = np.clip(audio, -1, 1)
return audio, iq
def bits_to_signals(bits: List[int], scheme: ModulationScheme, cfg: ModConfig) -> Tuple[Optional[np.ndarray], Optional[np.ndarray]]:
"""Convert bits to modulated signals"""
if scheme == ModulationScheme.BFSK:
return Modulators.bfsk(bits, cfg), None
elif scheme == ModulationScheme.AFSK:
return Modulators.afsk(bits, cfg), None
elif scheme == ModulationScheme.BPSK:
return Modulators.bpsk(bits, cfg)
elif scheme == ModulationScheme.QPSK:
return Modulators.qpsk(bits, cfg)
elif scheme == ModulationScheme.QAM16:
return Modulators.qam16(bits, cfg)
elif scheme == ModulationScheme.OFDM:
return Modulators.ofdm(bits, cfg)
elif scheme == ModulationScheme.DSSS_BPSK:
return Modulators.dsss_bpsk(bits, cfg), None
else:
raise ValueError(f"Unknown modulation scheme: {scheme}")
# =========================================================
# File I/O and Visualization
# =========================================================
def write_wav_mono(path: Path, signal: np.ndarray, sample_rate: int):
"""Write mono WAV file"""
sig = np.clip(signal, -1.0, 1.0)
pcm = (sig * 32767.0).astype(np.int16)
with wave.open(str(path), "wb") as w:
w.setnchannels(1)
w.setsampwidth(2)
w.setframerate(sample_rate)
w.writeframes(pcm.tobytes())
def write_iq_f32(path: Path, iq: np.ndarray):
"""Write IQ data as interleaved float32"""
if iq.ndim != 1 or not np.iscomplexobj(iq):
raise ValueError("iq must be 1-D complex array")
interleaved = np.empty(iq.size * 2, dtype=np.float32)
interleaved[0::2] = iq.real.astype(np.float32)
interleaved[1::2] = iq.imag.astype(np.float32)
path.write_bytes(interleaved.tobytes())
def plot_wave_and_spectrum(path_png: Path, x: np.ndarray, sr: int, title: str):
"""Plot waveform and spectrum"""
if not HAS_MATPLOTLIB:
logger.warning("Matplotlib not available, skipping plot")
return
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 8))
# Time domain plot (first 50ms)
samples_to_plot = min(len(x), int(0.05 * sr))
t = np.arange(samples_to_plot) / sr
ax1.plot(t, x[:samples_to_plot])
ax1.set_title(f"{title} - Time Domain (first 50ms)")
ax1.set_xlabel("Time (s)")
ax1.set_ylabel("Amplitude")
ax1.grid(True, alpha=0.3)
# Frequency domain plot
spectrum = np.abs(rfft(x)) + 1e-12
freqs = rfftfreq(len(x), 1.0 / sr)
ax2.semilogy(freqs, spectrum / spectrum.max())
ax2.set_xlim(0, min(8000, sr // 2))
ax2.set_title(f"{title} - Frequency Domain")
ax2.set_xlabel("Frequency (Hz)")
ax2.set_ylabel("Normalized |X(f)|")
ax2.grid(True, alpha=0.3)
plt.tight_layout()
fig.savefig(path_png, dpi=300, bbox_inches='tight')
plt.close(fig)
def plot_constellation(symbols: np.ndarray, title: str = "Constellation", save_path: Optional[str] = None):
"""Plot constellation diagram"""
if not HAS_MATPLOTLIB:
logger.warning("Matplotlib not available, skipping constellation plot")
return
plt.figure(figsize=(8, 8))
plt.scatter(np.real(symbols), np.imag(symbols), alpha=0.7, s=20)
plt.title(title)
plt.xlabel("In-phase (I)")
plt.ylabel("Quadrature (Q)")
plt.grid(True, alpha=0.3)
plt.axis('equal')
if save_path:
plt.savefig(save_path, dpi=300, bbox_inches='tight')
plt.close()
else:
plt.show()
def play_audio(x: np.ndarray, sr: int):
"""Play audio through soundcard"""
if not HAS_AUDIO:
logger.warning("sounddevice not installed; cannot play audio")
return
try:
sd.play(x, sr)
sd.wait()
except Exception as e:
logger.error(f"Audio playback failed: {e}")
# =========================================================
# Complete Processing Pipeline
# =========================================================
def full_process_and_save(
text: str,
outdir: Path,
scheme: ModulationScheme,
mcfg: ModConfig,
fcfg: FrameConfig,
sec: SecurityConfig,
fec_scheme: FEC,
want_wav: bool,
want_iq: bool,
title: str = "SignalProcessor"
) -> OutputPaths:
"""Complete processing pipeline from text to files"""
outdir.mkdir(parents=True, exist_ok=True)
timestamp = int(time.time())
base_name = f"signal_{scheme.name.lower()}_{timestamp}"
base_path = outdir / base_name
# Encode text to bits
bits = encode_text(text, fcfg, sec, fec_scheme)
logger.info(f"Encoded {len(text)} characters to {len(bits)} bits")
# Modulate bits to signals
audio, iq = bits_to_signals(bits, scheme, mcfg)
paths = OutputPaths()
# Save WAV file
if want_wav and audio is not None and len(audio) > 0:
paths.wav = base_path.with_suffix(".wav")
write_wav_mono(paths.wav, audio, mcfg.sample_rate)
logger.info(f"Saved WAV: {paths.wav}")
# Save IQ file
if want_iq:
if iq is None and audio is not None:
# Generate IQ from audio using Hilbert transform
try:
analytic = sp_signal.hilbert(audio)
iq = analytic.astype(np.complex64)
except Exception as e:
logger.warning(f"Failed to generate IQ from audio: {e}")
iq = audio.astype(np.float32) + 1j * np.zeros_like(audio, dtype=np.float32)
if iq is not None:
paths.iq = base_path.with_suffix(".iqf32")
write_iq_f32(paths.iq, iq)
logger.info(f"Saved IQ: {paths.iq}")
# Generate visualization
if audio is not None and len(audio) > 0:
paths.png = base_path.with_suffix(".png")
plot_wave_and_spectrum(paths.png, audio, mcfg.sample_rate, title)
logger.info(f"Saved plot: {paths.png}")
# Save metadata
metadata = {
"timestamp": timestamp,
"scheme": scheme.name,
"sample_rate": mcfg.sample_rate,
"symbol_rate": mcfg.symbol_rate,
"duration_sec": len(audio) / mcfg.sample_rate if audio is not None else 0,
"fec": fec_scheme.name,
"encrypted": bool(sec.password),
"watermark": bool(sec.watermark),
"hmac": bool(sec.hmac_key),
"text_length": len(text),
"bits_length": len(bits)
}
paths.meta = base_path.with_suffix(".json")
paths.meta.write_text(safe_json(metadata), encoding="utf-8")
logger.info(f"Saved metadata: {paths.meta}")
return paths
def demo_signal_processing():
"""Demonstration of signal processing capabilities"""
# Test configuration
text = "Hello, World! This is a test of the signal processing system. 🚀"
schemes_to_test = [
ModulationScheme.BFSK,
ModulationScheme.QPSK,
ModulationScheme.QAM16,
ModulationScheme.OFDM
]
mcfg = ModConfig(sample_rate=48000, symbol_rate=1200)
fcfg = FrameConfig()
sec = SecurityConfig(watermark="test_watermark")
fec_scheme = FEC.HAMMING74
results = []
for scheme in schemes_to_test:
logger.info(f"Testing {scheme.name}...")
try:
paths = full_process_and_save(
text=text,
outdir=Path("demo_output"),
scheme=scheme,
mcfg=mcfg,
fcfg=fcfg,
sec=sec,
fec_scheme=fec_scheme,
want_wav=True,
want_iq=True,
title=f"{scheme.name} Demo"
)
results.append({
"scheme": scheme.name,
"success": True,
"paths": paths
})
except Exception as e:
logger.error(f"Failed to process {scheme.name}: {e}")
results.append({
"scheme": scheme.name,
"success": False,
"error": str(e)
})
# Print summary
logger.info("=== Signal Processing Demo Complete ===")
for result in results:
status = "✓" if result["success"] else "✗"
logger.info(f"{status} {result['scheme']}")
return results
if __name__ == "__main__":
demo_signal_processing()