Nelio Barbosa
commited on
Commit
·
9d8daba
1
Parent(s):
74b3e30
Upload 4 files
Browse files- app.py +18 -0
- st.py +37 -0
- torch_utils.py +53 -0
- unv_model.py +98 -0
app.py
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from flask import Flask, jsonify, request
|
| 2 |
+
from torch_utils import transform_image
|
| 3 |
+
from torch_utils import get_prediction
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
app = Flask(__name__)
|
| 7 |
+
|
| 8 |
+
@app.route('/classify', methods=['POST'])
|
| 9 |
+
def classify():
|
| 10 |
+
if request.method == 'POST':
|
| 11 |
+
file = request.files['file']
|
| 12 |
+
img_bytes = file.read()
|
| 13 |
+
img = transform_image(img_bytes)
|
| 14 |
+
pred = get_prediction(img)
|
| 15 |
+
return jsonify({'classification': int(pred[0])})
|
| 16 |
+
|
| 17 |
+
if __name__ == '__main__':
|
| 18 |
+
app.run(port=5000, debug=True)
|
st.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import requests
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from io import BytesIO
|
| 5 |
+
|
| 6 |
+
CLASS_LABELS = {
|
| 7 |
+
0: "airplane",
|
| 8 |
+
1: "bird",
|
| 9 |
+
2: "car",
|
| 10 |
+
3: "cat",
|
| 11 |
+
4: "deer",
|
| 12 |
+
5: "dog",
|
| 13 |
+
6: "horse",
|
| 14 |
+
7: "monkey",
|
| 15 |
+
8: "ship",
|
| 16 |
+
9: "truck",
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
def get_classification(image_bytes):
|
| 20 |
+
response = requests.post("http://localhost:5000/classify", files={"file": image_bytes})
|
| 21 |
+
class_id = response.json()["classification"]
|
| 22 |
+
return CLASS_LABELS[class_id]
|
| 23 |
+
|
| 24 |
+
st.title("Image Classification")
|
| 25 |
+
st.write("Upload an image to classify")
|
| 26 |
+
|
| 27 |
+
uploaded_file = st.file_uploader("Choose an image", type=["jpg", "jpeg", "png"])
|
| 28 |
+
|
| 29 |
+
if uploaded_file is not None:
|
| 30 |
+
image = Image.open(uploaded_file)
|
| 31 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
| 32 |
+
|
| 33 |
+
if st.button("Classify"):
|
| 34 |
+
img_bytes = uploaded_file.read()
|
| 35 |
+
label = get_classification(img_bytes)
|
| 36 |
+
st.write("Prediction:", label)
|
| 37 |
+
|
torch_utils.py
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import io
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
import torchvision.transforms as transforms
|
| 6 |
+
from PIL import Image
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class CNN(nn.Module):
|
| 10 |
+
def __init__(self):
|
| 11 |
+
super(CNN, self).__init__()
|
| 12 |
+
self.conv1 = nn.Conv2d(3, 32, 5)
|
| 13 |
+
self.conv2 = nn.Conv2d(32, 64, 5)
|
| 14 |
+
#full layer
|
| 15 |
+
self.fc1 = nn.Linear(64 * 13 * 13, 128)
|
| 16 |
+
self.fc2 = nn.Linear(128, 64)
|
| 17 |
+
self.fc3 = nn.Linear(64, 10)
|
| 18 |
+
|
| 19 |
+
def forward(self, x):
|
| 20 |
+
x = F.max_pool2d(F.relu(self.conv1(x)), (2,2))
|
| 21 |
+
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
|
| 22 |
+
x = x.view(-1, self.num_flat_features(x))
|
| 23 |
+
x = F.relu(self.fc1(x))
|
| 24 |
+
x = F.relu(self.fc2(x))
|
| 25 |
+
x = self.fc3(x)
|
| 26 |
+
return x
|
| 27 |
+
|
| 28 |
+
def num_flat_features(self, x):
|
| 29 |
+
size = x.size()[1:] # all dimensions except the batch dimension
|
| 30 |
+
num_features = 1
|
| 31 |
+
for s in size:
|
| 32 |
+
num_features *= s
|
| 33 |
+
return num_features
|
| 34 |
+
|
| 35 |
+
loaded_model = CNN()
|
| 36 |
+
loaded_model.load_state_dict(torch.load("cnn_model.pth")) # it takes the loaded dictionary, not the path file itself
|
| 37 |
+
loaded_model.eval()
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
#transform images
|
| 41 |
+
|
| 42 |
+
def transform_image(image_bytes):
|
| 43 |
+
transform = transforms.Compose(
|
| 44 |
+
[transforms.Resize(64), transforms.CenterCrop(64), transforms.ToTensor()]
|
| 45 |
+
)
|
| 46 |
+
image = Image.open(io.BytesIO(image_bytes))
|
| 47 |
+
return transform(image).unsqueeze(0)
|
| 48 |
+
|
| 49 |
+
def get_prediction(image_tensor):
|
| 50 |
+
outputs = loaded_model(image_tensor)
|
| 51 |
+
# max returns (value ,index)
|
| 52 |
+
_, predicted = torch.max(outputs.data, 1)
|
| 53 |
+
return predicted
|
unv_model.py
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import torch.optim as optim
|
| 5 |
+
import torchvision
|
| 6 |
+
import torchvision.transforms as transforms
|
| 7 |
+
import scipy
|
| 8 |
+
|
| 9 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")# assign the device to the model
|
| 10 |
+
|
| 11 |
+
#hyper-parameters
|
| 12 |
+
learning_rate = 0.005
|
| 13 |
+
batch_size = 128
|
| 14 |
+
hidden_size = 300
|
| 15 |
+
num_classes = 10
|
| 16 |
+
num_epochs = 550
|
| 17 |
+
|
| 18 |
+
#load data
|
| 19 |
+
|
| 20 |
+
transform = transforms.Compose(
|
| 21 |
+
[transforms.Resize(64), transforms.CenterCrop(64), transforms.ToTensor()]
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
train_dataset = torchvision.datasets.STL10(root='./dataSTL10', split="train", transform=transform, download=True)
|
| 25 |
+
test_dataset = torchvision.datasets.STL10(root='./dataSTL10', split="test", transform=transform, download=True)
|
| 26 |
+
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
|
| 27 |
+
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)
|
| 28 |
+
|
| 29 |
+
# CNN
|
| 30 |
+
|
| 31 |
+
class CNN(nn.Module):
|
| 32 |
+
def __init__(self):
|
| 33 |
+
super(CNN, self).__init__()
|
| 34 |
+
self.conv1 = nn.Conv2d(3, 32, 5)
|
| 35 |
+
self.conv2 = nn.Conv2d(32, 64, 5)
|
| 36 |
+
#full layer
|
| 37 |
+
self.fc1 = nn.Linear(64 * 13 * 13, 128)
|
| 38 |
+
self.fc2 = nn.Linear(128, 64)
|
| 39 |
+
self.fc3 = nn.Linear(64, num_classes)
|
| 40 |
+
|
| 41 |
+
def forward(self, x):
|
| 42 |
+
x = F.max_pool2d(F.relu(self.conv1(x)), (2,2))
|
| 43 |
+
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
|
| 44 |
+
x = x.view(-1, self.num_flat_features(x))
|
| 45 |
+
x = F.relu(self.fc1(x))
|
| 46 |
+
x = F.relu(self.fc2(x))
|
| 47 |
+
x = self.fc3(x)
|
| 48 |
+
return x
|
| 49 |
+
|
| 50 |
+
def num_flat_features(self, x):
|
| 51 |
+
size = x.size()[1:] # all dimensions except the batch dimension
|
| 52 |
+
num_features = 1
|
| 53 |
+
for s in size:
|
| 54 |
+
num_features *= s
|
| 55 |
+
return num_features
|
| 56 |
+
|
| 57 |
+
cnn = CNN().to(device)
|
| 58 |
+
|
| 59 |
+
criterion = nn.CrossEntropyLoss()
|
| 60 |
+
optimizer = optim.Adam(cnn.parameters(), lr=learning_rate)
|
| 61 |
+
|
| 62 |
+
# training loop
|
| 63 |
+
|
| 64 |
+
for epoch in range(num_epochs):
|
| 65 |
+
for i, (images, labels) in enumerate(train_loader):
|
| 66 |
+
images = images.to(device)
|
| 67 |
+
labels = labels.to(device)
|
| 68 |
+
|
| 69 |
+
out = cnn(images)
|
| 70 |
+
loss = criterion(out, labels)
|
| 71 |
+
|
| 72 |
+
optimizer.zero_grad()
|
| 73 |
+
loss.backward()
|
| 74 |
+
optimizer.step()
|
| 75 |
+
|
| 76 |
+
if(i+1) % 1 == 0:
|
| 77 |
+
print(f'epoch: {epoch+1}/{num_epochs} step: {i+1}, loss: loss: {loss.item():.4f}')
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
with torch.no_grad():
|
| 81 |
+
n_correct = 0
|
| 82 |
+
n_samples = 0
|
| 83 |
+
for images, labels in test_loader:
|
| 84 |
+
images = images.to(device)
|
| 85 |
+
labels = labels.to(device)
|
| 86 |
+
outputs = cnn(images)
|
| 87 |
+
# max returns (value ,index)
|
| 88 |
+
_, predicted = torch.max(outputs.data, 1)
|
| 89 |
+
n_samples += labels.size(0)
|
| 90 |
+
n_correct += (predicted == labels).sum().item()
|
| 91 |
+
|
| 92 |
+
acc = 100.0 * n_correct / n_samples
|
| 93 |
+
print(f'Accuracy of the network on the {n_samples} test images: {acc} %')
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
# Save the model
|
| 97 |
+
torch.save(cnn.state_dict(), "cnn_model.pth")
|
| 98 |
+
|