AIMLNewbie's picture
Upload README.md with huggingface_hub
96fa511 verified
metadata
language:
  - en
library_name: transformers
tags:
  - qwen-coder
  - MOE
  - pruning
  - compression
  - mlx
  - mlx-my-repo
license: apache-2.0
name: cerebras/Qwen3-Coder-REAP-25B-A3B
description: >
  This model was obtained by uniformly pruning 20% of experts in
  Qwen3-Coder-30B-A3B-Instruct using the REAP method.
readme: |
  https://huggingface.co/cerebras/Qwen3-Coder-REAP-25B-A3B/main/README.md
license_link: https://huggingface.co/cerebras/Qwen3-Coder-REAP-25B-A3B/blob/main/LICENSE
pipeline_tag: text-generation
base_model: cerebras/Qwen3-Coder-REAP-25B-A3B

AIMLNewbie/Qwen3-Coder-REAP-25B-A3B-mlx-6Bit

The Model AIMLNewbie/Qwen3-Coder-REAP-25B-A3B-mlx-6Bit was converted to MLX format from cerebras/Qwen3-Coder-REAP-25B-A3B using mlx-lm version 0.26.4.

Use with mlx

pip install mlx-lm
from mlx_lm import load, generate

model, tokenizer = load("AIMLNewbie/Qwen3-Coder-REAP-25B-A3B-mlx-6Bit")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)