Upload 17 files
Browse files- Vision_Project.py +35 -0
- Vision_Tower.py +169 -0
- added_tokens.json +5 -0
- config.json +44 -0
- configuration_mcmd.py +15 -0
- merges.txt +0 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +869 -0
- modeling_mcmd.py +512 -0
- special_tokens_map.json +20 -0
- tokenizer.json +0 -0
- tokenizer_config.json +43 -0
- training_args.bin +3 -0
- vocab.json +0 -0
Vision_Project.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import re
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
|
| 6 |
+
class IdentityMap(nn.Module):
|
| 7 |
+
|
| 8 |
+
def __init__(self):
|
| 9 |
+
super().__init__()
|
| 10 |
+
|
| 11 |
+
def forward(self, x, *args, **kwargs):
|
| 12 |
+
return x
|
| 13 |
+
|
| 14 |
+
@property
|
| 15 |
+
def config(self):
|
| 16 |
+
return {'mm_projector_type': 'identity'}
|
| 17 |
+
|
| 18 |
+
def mlp2x_gelu(projector_type):
|
| 19 |
+
# mm_hidden_size = 1024
|
| 20 |
+
mm_hidden_size = 1280
|
| 21 |
+
hidden_size = 3584
|
| 22 |
+
|
| 23 |
+
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
|
| 24 |
+
if mlp_gelu_match:
|
| 25 |
+
mlp_depth = int(mlp_gelu_match.group(1))
|
| 26 |
+
modules = [nn.Linear(mm_hidden_size, hidden_size)]
|
| 27 |
+
for _ in range(1, mlp_depth):
|
| 28 |
+
modules.append(nn.GELU())
|
| 29 |
+
modules.append(nn.Linear(hidden_size, hidden_size))
|
| 30 |
+
return nn.Sequential(*modules)
|
| 31 |
+
|
| 32 |
+
if projector_type == 'identity':
|
| 33 |
+
return IdentityMap()
|
| 34 |
+
|
| 35 |
+
raise ValueError(f'Unknown projector type: {projector_type}')
|
Vision_Tower.py
ADDED
|
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from transformers import CLIPVisionModel
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class clip_vit_large_patch14_336(nn.Module):
|
| 7 |
+
|
| 8 |
+
def __init__(self, vision_tower, use_resize_pos=True):
|
| 9 |
+
super().__init__()
|
| 10 |
+
|
| 11 |
+
self.is_loaded = False
|
| 12 |
+
self.is_resize_pos = False
|
| 13 |
+
|
| 14 |
+
self.vision_tower_name = vision_tower
|
| 15 |
+
self.select_layer = -1
|
| 16 |
+
self.select_feature = 'patch'
|
| 17 |
+
self.load_model()
|
| 18 |
+
|
| 19 |
+
#change model to input shape[490*490]
|
| 20 |
+
if use_resize_pos:
|
| 21 |
+
self.resize_pos()
|
| 22 |
+
|
| 23 |
+
def load_model(self):
|
| 24 |
+
self.vision_tower = CLIPVisionModel.from_pretrained(
|
| 25 |
+
self.vision_tower_name)
|
| 26 |
+
self.vision_tower.requires_grad_(False)
|
| 27 |
+
|
| 28 |
+
self.is_loaded = True
|
| 29 |
+
|
| 30 |
+
def resize_pos(self):
|
| 31 |
+
pos_embed_checkpoint = self.vision_tower.vision_model.embeddings.position_embedding.weight
|
| 32 |
+
pos_embed_checkpoint = pos_embed_checkpoint.unsqueeze(0)
|
| 33 |
+
orig_size = 24 #336/14
|
| 34 |
+
new_size = 35 #490/14
|
| 35 |
+
|
| 36 |
+
if pos_embed_checkpoint.shape[1] == new_size**2 + 1:
|
| 37 |
+
self.is_resize_pos = True
|
| 38 |
+
else:
|
| 39 |
+
embedding_size = pos_embed_checkpoint.shape[-1]
|
| 40 |
+
num_extra_tokens = 1
|
| 41 |
+
new_num = new_size**2 + num_extra_tokens
|
| 42 |
+
#print('Position interpolate from %dx%d to %dx%d' %
|
| 43 |
+
# (orig_size, orig_size, new_size, new_size))
|
| 44 |
+
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
| 45 |
+
# only the position tokens are interpolated
|
| 46 |
+
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
| 47 |
+
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size,
|
| 48 |
+
embedding_size).permute(
|
| 49 |
+
0, 3, 1, 2)
|
| 50 |
+
pos_tokens = torch.nn.functional.interpolate(
|
| 51 |
+
pos_tokens,
|
| 52 |
+
size=(new_size, new_size),
|
| 53 |
+
mode='bicubic',
|
| 54 |
+
align_corners=False)
|
| 55 |
+
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
| 56 |
+
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
| 57 |
+
|
| 58 |
+
new_pos_embed = new_pos_embed.squeeze(0)
|
| 59 |
+
|
| 60 |
+
self.vision_tower.vision_model.embeddings.position_embedding = torch.nn.Embedding(
|
| 61 |
+
new_num, 1024)
|
| 62 |
+
self.vision_tower.vision_model.embeddings.position_embedding.weight = torch.nn.Parameter(
|
| 63 |
+
new_pos_embed.to(pos_embed_checkpoint.dtype))
|
| 64 |
+
self.vision_tower.vision_model.embeddings.position_ids = torch.arange(
|
| 65 |
+
new_num).expand((1, -1))
|
| 66 |
+
|
| 67 |
+
self.is_resize_pos = True
|
| 68 |
+
|
| 69 |
+
def feature_select(self, image_forward_outs):
|
| 70 |
+
image_features = image_forward_outs.hidden_states[self.select_layer]
|
| 71 |
+
if self.select_feature == 'patch':
|
| 72 |
+
image_features = image_features[:, 1:]
|
| 73 |
+
elif self.select_feature == 'cls_patch':
|
| 74 |
+
image_features = image_features
|
| 75 |
+
else:
|
| 76 |
+
raise ValueError(
|
| 77 |
+
f'Unexpected select feature: {self.select_feature}')
|
| 78 |
+
return image_features
|
| 79 |
+
|
| 80 |
+
def forward(self, images):
|
| 81 |
+
if not self.is_loaded:
|
| 82 |
+
self.load_model()
|
| 83 |
+
if type(images) is list: # not batch infurence speed!
|
| 84 |
+
image_features = []
|
| 85 |
+
for image in images:
|
| 86 |
+
image_forward_out = self.vision_tower(
|
| 87 |
+
image.to(device=self.device,
|
| 88 |
+
dtype=self.dtype).unsqueeze(0),
|
| 89 |
+
output_hidden_states=True)
|
| 90 |
+
image_feature = self.feature_select(image_forward_out).to(
|
| 91 |
+
image.dtype)
|
| 92 |
+
image_features.append(image_feature)
|
| 93 |
+
else:
|
| 94 |
+
image_forward_outs = self.vision_tower(
|
| 95 |
+
images.to(device=self.device, dtype=self.dtype),
|
| 96 |
+
output_hidden_states=True)
|
| 97 |
+
image_features = self.feature_select(image_forward_outs).to(
|
| 98 |
+
images.dtype)
|
| 99 |
+
|
| 100 |
+
return image_features
|
| 101 |
+
|
| 102 |
+
@property
|
| 103 |
+
def device(self):
|
| 104 |
+
return self.vision_tower.device
|
| 105 |
+
|
| 106 |
+
@property
|
| 107 |
+
def dtype(self):
|
| 108 |
+
return self.vision_tower.dtype
|
| 109 |
+
|
| 110 |
+
class DFN5B_CLIP_ViT_H_14_378(nn.Module):
|
| 111 |
+
|
| 112 |
+
def __init__(self, vision_tower):
|
| 113 |
+
super().__init__()
|
| 114 |
+
|
| 115 |
+
self.is_loaded = False
|
| 116 |
+
self.is_resize_pos = False
|
| 117 |
+
|
| 118 |
+
self.vision_tower_name = vision_tower
|
| 119 |
+
self.select_layer = -1
|
| 120 |
+
self.select_feature = 'patch'
|
| 121 |
+
self.load_model()
|
| 122 |
+
|
| 123 |
+
def load_model(self):
|
| 124 |
+
self.vision_tower = CLIPVisionModel.from_pretrained(
|
| 125 |
+
self.vision_tower_name)
|
| 126 |
+
self.vision_tower.requires_grad_(False)
|
| 127 |
+
|
| 128 |
+
self.is_loaded = True
|
| 129 |
+
|
| 130 |
+
def feature_select(self, image_forward_outs):
|
| 131 |
+
image_features = image_forward_outs.hidden_states[self.select_layer]
|
| 132 |
+
if self.select_feature == 'patch':
|
| 133 |
+
image_features = image_features[:, 1:]
|
| 134 |
+
elif self.select_feature == 'cls_patch':
|
| 135 |
+
image_features = image_features
|
| 136 |
+
else:
|
| 137 |
+
raise ValueError(
|
| 138 |
+
f'Unexpected select feature: {self.select_feature}')
|
| 139 |
+
return image_features
|
| 140 |
+
|
| 141 |
+
def forward(self, images):
|
| 142 |
+
if not self.is_loaded:
|
| 143 |
+
self.load_model()
|
| 144 |
+
if type(images) is list: # not batch infurence speed!
|
| 145 |
+
image_features = []
|
| 146 |
+
for image in images:
|
| 147 |
+
image_forward_out = self.vision_tower(
|
| 148 |
+
image.to(device=self.device,
|
| 149 |
+
dtype=self.dtype).unsqueeze(0),
|
| 150 |
+
output_hidden_states=True)
|
| 151 |
+
image_feature = self.feature_select(image_forward_out).to(
|
| 152 |
+
image.dtype)
|
| 153 |
+
image_features.append(image_feature)
|
| 154 |
+
else:
|
| 155 |
+
image_forward_outs = self.vision_tower(
|
| 156 |
+
images.to(device=self.device, dtype=self.dtype),
|
| 157 |
+
output_hidden_states=True)
|
| 158 |
+
image_features = self.feature_select(image_forward_outs).to(
|
| 159 |
+
images.dtype)
|
| 160 |
+
|
| 161 |
+
return image_features
|
| 162 |
+
|
| 163 |
+
@property
|
| 164 |
+
def device(self):
|
| 165 |
+
return self.vision_tower.device
|
| 166 |
+
|
| 167 |
+
@property
|
| 168 |
+
def dtype(self):
|
| 169 |
+
return self.vision_tower.dtype
|
added_tokens.json
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"<|endoftext|>": 151643,
|
| 3 |
+
"<|im_end|>": 151645,
|
| 4 |
+
"<|im_start|>": 151644
|
| 5 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "/root/lwt/tech/mcmd",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"mcmdForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "configuration_mcmd.mcmdConfig",
|
| 8 |
+
"AutoModel": "modeling_mcmd.mcmdForCausalLM",
|
| 9 |
+
"AutoModelForCausalLM": "modeling_mcmd.mcmdForCausalLM"
|
| 10 |
+
},
|
| 11 |
+
"clip_path": "/root/LWT/Models/DFN5B-CLIP-ViT-H-14-378",
|
| 12 |
+
"input_img_size": 378,
|
| 13 |
+
"lm_model": {
|
| 14 |
+
"attention_dropout": 0.0,
|
| 15 |
+
"bos_token_id": 151643,
|
| 16 |
+
"eos_token_id": 151645,
|
| 17 |
+
"hidden_act": "silu",
|
| 18 |
+
"hidden_size": 3584,
|
| 19 |
+
"initializer_range": 0.02,
|
| 20 |
+
"intermediate_size": 18944,
|
| 21 |
+
"max_position_embeddings": 32768,
|
| 22 |
+
"max_window_layers": 28,
|
| 23 |
+
"model_type": "qwen2",
|
| 24 |
+
"num_attention_heads": 28,
|
| 25 |
+
"num_hidden_layers": 28,
|
| 26 |
+
"num_key_value_heads": 4,
|
| 27 |
+
"rms_norm_eps": 1e-06,
|
| 28 |
+
"rope_theta": 1000000.0,
|
| 29 |
+
"sliding_window": 131072,
|
| 30 |
+
"tie_word_embeddings": false,
|
| 31 |
+
"torch_dtype": "bfloat16",
|
| 32 |
+
"transformers_version": "4.41.2",
|
| 33 |
+
"use_cache": true,
|
| 34 |
+
"use_sliding_window": false,
|
| 35 |
+
"vocab_size": 152064
|
| 36 |
+
},
|
| 37 |
+
"lm_path": "/root/LWT/Models/Qwen2-7B-Instruct",
|
| 38 |
+
"max_length": 4096,
|
| 39 |
+
"model_type": "mcmd",
|
| 40 |
+
"torch_dtype": "bfloat16",
|
| 41 |
+
"transformers_version": "4.40.0",
|
| 42 |
+
"vision_config": "mlp2x_gelu",
|
| 43 |
+
"vocab_size": 152064
|
| 44 |
+
}
|
configuration_mcmd.py
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 3 |
+
|
| 4 |
+
class mcmdConfig(PretrainedConfig):
|
| 5 |
+
|
| 6 |
+
model_type = "mcmd"
|
| 7 |
+
_auto_class = "AutoConfig"
|
| 8 |
+
|
| 9 |
+
def __init__(
|
| 10 |
+
self,
|
| 11 |
+
**kwargs,
|
| 12 |
+
):
|
| 13 |
+
super().__init__(
|
| 14 |
+
**kwargs,
|
| 15 |
+
)
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model-00001-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:47d9572190896617f2a8d3260ef421608c8dfd4de20941fa747bc3539a8099d2
|
| 3 |
+
size 4877661712
|
model-00002-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2a14fb3d73d667f9e9ae1e842cad95d0e744e30e293df64be2e82de0fbc50ce1
|
| 3 |
+
size 4932752112
|
model-00003-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:efe22d5e53941a70effa8c5333a62e9febb60e3356cebf6cb8dafd465cbcca4d
|
| 3 |
+
size 4330866208
|
model-00004-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:905adcc732723412112b06f2ffa551bd8d9c21a757552c4188b3ee337b29e80b
|
| 3 |
+
size 2387691576
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,869 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 16528855552
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_model.lm_head.weight": "model-00004-of-00004.safetensors",
|
| 7 |
+
"lm_model.model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
| 8 |
+
"lm_model.model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 9 |
+
"lm_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 10 |
+
"lm_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 11 |
+
"lm_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 12 |
+
"lm_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 13 |
+
"lm_model.model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 14 |
+
"lm_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 15 |
+
"lm_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 16 |
+
"lm_model.model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 17 |
+
"lm_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 18 |
+
"lm_model.model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 19 |
+
"lm_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 20 |
+
"lm_model.model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 21 |
+
"lm_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 22 |
+
"lm_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 23 |
+
"lm_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 24 |
+
"lm_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 25 |
+
"lm_model.model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 26 |
+
"lm_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 27 |
+
"lm_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 28 |
+
"lm_model.model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 29 |
+
"lm_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 30 |
+
"lm_model.model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 31 |
+
"lm_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 32 |
+
"lm_model.model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 33 |
+
"lm_model.model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 34 |
+
"lm_model.model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 35 |
+
"lm_model.model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 36 |
+
"lm_model.model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 37 |
+
"lm_model.model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 38 |
+
"lm_model.model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 39 |
+
"lm_model.model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 40 |
+
"lm_model.model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 41 |
+
"lm_model.model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 42 |
+
"lm_model.model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 43 |
+
"lm_model.model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 44 |
+
"lm_model.model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 45 |
+
"lm_model.model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 46 |
+
"lm_model.model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 47 |
+
"lm_model.model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 48 |
+
"lm_model.model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 49 |
+
"lm_model.model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 50 |
+
"lm_model.model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 51 |
+
"lm_model.model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 52 |
+
"lm_model.model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 53 |
+
"lm_model.model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 54 |
+
"lm_model.model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 55 |
+
"lm_model.model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 56 |
+
"lm_model.model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 57 |
+
"lm_model.model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 58 |
+
"lm_model.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 59 |
+
"lm_model.model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 60 |
+
"lm_model.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 61 |
+
"lm_model.model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 62 |
+
"lm_model.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 63 |
+
"lm_model.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 64 |
+
"lm_model.model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 65 |
+
"lm_model.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 66 |
+
"lm_model.model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 67 |
+
"lm_model.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 68 |
+
"lm_model.model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 69 |
+
"lm_model.model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 70 |
+
"lm_model.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 71 |
+
"lm_model.model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 72 |
+
"lm_model.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 73 |
+
"lm_model.model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 74 |
+
"lm_model.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 75 |
+
"lm_model.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 76 |
+
"lm_model.model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 77 |
+
"lm_model.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 78 |
+
"lm_model.model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 79 |
+
"lm_model.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 80 |
+
"lm_model.model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 81 |
+
"lm_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 82 |
+
"lm_model.model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 83 |
+
"lm_model.model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 84 |
+
"lm_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 85 |
+
"lm_model.model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 86 |
+
"lm_model.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 87 |
+
"lm_model.model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 88 |
+
"lm_model.model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 89 |
+
"lm_model.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 90 |
+
"lm_model.model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 91 |
+
"lm_model.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 92 |
+
"lm_model.model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 93 |
+
"lm_model.model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 94 |
+
"lm_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 95 |
+
"lm_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 96 |
+
"lm_model.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 97 |
+
"lm_model.model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 98 |
+
"lm_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 99 |
+
"lm_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 100 |
+
"lm_model.model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 101 |
+
"lm_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 102 |
+
"lm_model.model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 103 |
+
"lm_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 104 |
+
"lm_model.model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 105 |
+
"lm_model.model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 106 |
+
"lm_model.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 107 |
+
"lm_model.model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 108 |
+
"lm_model.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 109 |
+
"lm_model.model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 110 |
+
"lm_model.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 111 |
+
"lm_model.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 112 |
+
"lm_model.model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 113 |
+
"lm_model.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 114 |
+
"lm_model.model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 115 |
+
"lm_model.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 116 |
+
"lm_model.model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 117 |
+
"lm_model.model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 118 |
+
"lm_model.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 119 |
+
"lm_model.model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 120 |
+
"lm_model.model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 121 |
+
"lm_model.model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 122 |
+
"lm_model.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 123 |
+
"lm_model.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 124 |
+
"lm_model.model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 125 |
+
"lm_model.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 126 |
+
"lm_model.model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 127 |
+
"lm_model.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 128 |
+
"lm_model.model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 129 |
+
"lm_model.model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 130 |
+
"lm_model.model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 131 |
+
"lm_model.model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 132 |
+
"lm_model.model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 133 |
+
"lm_model.model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 134 |
+
"lm_model.model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 135 |
+
"lm_model.model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 136 |
+
"lm_model.model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 137 |
+
"lm_model.model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 138 |
+
"lm_model.model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 139 |
+
"lm_model.model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 140 |
+
"lm_model.model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 141 |
+
"lm_model.model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 142 |
+
"lm_model.model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 143 |
+
"lm_model.model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 144 |
+
"lm_model.model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 145 |
+
"lm_model.model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 146 |
+
"lm_model.model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 147 |
+
"lm_model.model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 148 |
+
"lm_model.model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 149 |
+
"lm_model.model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 150 |
+
"lm_model.model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 151 |
+
"lm_model.model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 152 |
+
"lm_model.model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 153 |
+
"lm_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 154 |
+
"lm_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 155 |
+
"lm_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 156 |
+
"lm_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 157 |
+
"lm_model.model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 158 |
+
"lm_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 159 |
+
"lm_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 160 |
+
"lm_model.model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 161 |
+
"lm_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 162 |
+
"lm_model.model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 163 |
+
"lm_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 164 |
+
"lm_model.model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 165 |
+
"lm_model.model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 166 |
+
"lm_model.model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 167 |
+
"lm_model.model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 168 |
+
"lm_model.model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 169 |
+
"lm_model.model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 170 |
+
"lm_model.model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 171 |
+
"lm_model.model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 172 |
+
"lm_model.model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 173 |
+
"lm_model.model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 174 |
+
"lm_model.model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 175 |
+
"lm_model.model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 176 |
+
"lm_model.model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 177 |
+
"lm_model.model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 178 |
+
"lm_model.model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 179 |
+
"lm_model.model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 180 |
+
"lm_model.model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 181 |
+
"lm_model.model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 182 |
+
"lm_model.model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 183 |
+
"lm_model.model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 184 |
+
"lm_model.model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 185 |
+
"lm_model.model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 186 |
+
"lm_model.model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 187 |
+
"lm_model.model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 188 |
+
"lm_model.model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 189 |
+
"lm_model.model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 190 |
+
"lm_model.model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 191 |
+
"lm_model.model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 192 |
+
"lm_model.model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 193 |
+
"lm_model.model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 194 |
+
"lm_model.model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 195 |
+
"lm_model.model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 196 |
+
"lm_model.model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 197 |
+
"lm_model.model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 198 |
+
"lm_model.model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 199 |
+
"lm_model.model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 200 |
+
"lm_model.model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 201 |
+
"lm_model.model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 202 |
+
"lm_model.model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 203 |
+
"lm_model.model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 204 |
+
"lm_model.model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 205 |
+
"lm_model.model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 206 |
+
"lm_model.model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 207 |
+
"lm_model.model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 208 |
+
"lm_model.model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 209 |
+
"lm_model.model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 210 |
+
"lm_model.model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 211 |
+
"lm_model.model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 212 |
+
"lm_model.model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 213 |
+
"lm_model.model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 214 |
+
"lm_model.model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 215 |
+
"lm_model.model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 216 |
+
"lm_model.model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 217 |
+
"lm_model.model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 218 |
+
"lm_model.model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 219 |
+
"lm_model.model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 220 |
+
"lm_model.model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 221 |
+
"lm_model.model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 222 |
+
"lm_model.model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 223 |
+
"lm_model.model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 224 |
+
"lm_model.model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 225 |
+
"lm_model.model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 226 |
+
"lm_model.model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 227 |
+
"lm_model.model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 228 |
+
"lm_model.model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 229 |
+
"lm_model.model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 230 |
+
"lm_model.model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 231 |
+
"lm_model.model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 232 |
+
"lm_model.model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 233 |
+
"lm_model.model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 234 |
+
"lm_model.model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 235 |
+
"lm_model.model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 236 |
+
"lm_model.model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 237 |
+
"lm_model.model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 238 |
+
"lm_model.model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 239 |
+
"lm_model.model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 240 |
+
"lm_model.model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 241 |
+
"lm_model.model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 242 |
+
"lm_model.model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 243 |
+
"lm_model.model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 244 |
+
"lm_model.model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 245 |
+
"lm_model.model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 246 |
+
"lm_model.model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 247 |
+
"lm_model.model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 248 |
+
"lm_model.model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 249 |
+
"lm_model.model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 250 |
+
"lm_model.model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 251 |
+
"lm_model.model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 252 |
+
"lm_model.model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 253 |
+
"lm_model.model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 254 |
+
"lm_model.model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 255 |
+
"lm_model.model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 256 |
+
"lm_model.model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 257 |
+
"lm_model.model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 258 |
+
"lm_model.model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 259 |
+
"lm_model.model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 260 |
+
"lm_model.model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 261 |
+
"lm_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 262 |
+
"lm_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 263 |
+
"lm_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 264 |
+
"lm_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 265 |
+
"lm_model.model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 266 |
+
"lm_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 267 |
+
"lm_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 268 |
+
"lm_model.model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 269 |
+
"lm_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 270 |
+
"lm_model.model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 271 |
+
"lm_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 272 |
+
"lm_model.model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 273 |
+
"lm_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 274 |
+
"lm_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 275 |
+
"lm_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 276 |
+
"lm_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 277 |
+
"lm_model.model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 278 |
+
"lm_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 279 |
+
"lm_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 280 |
+
"lm_model.model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 281 |
+
"lm_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 282 |
+
"lm_model.model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 283 |
+
"lm_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 284 |
+
"lm_model.model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 285 |
+
"lm_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 286 |
+
"lm_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 287 |
+
"lm_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 288 |
+
"lm_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 289 |
+
"lm_model.model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 290 |
+
"lm_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 291 |
+
"lm_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 292 |
+
"lm_model.model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 293 |
+
"lm_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 294 |
+
"lm_model.model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 295 |
+
"lm_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 296 |
+
"lm_model.model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 297 |
+
"lm_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 298 |
+
"lm_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 299 |
+
"lm_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 300 |
+
"lm_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 301 |
+
"lm_model.model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 302 |
+
"lm_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 303 |
+
"lm_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 304 |
+
"lm_model.model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 305 |
+
"lm_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 306 |
+
"lm_model.model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 307 |
+
"lm_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 308 |
+
"lm_model.model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 309 |
+
"lm_model.model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 310 |
+
"lm_model.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 311 |
+
"lm_model.model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 312 |
+
"lm_model.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 313 |
+
"lm_model.model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 314 |
+
"lm_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 315 |
+
"lm_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 316 |
+
"lm_model.model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 317 |
+
"lm_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 318 |
+
"lm_model.model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 319 |
+
"lm_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 320 |
+
"lm_model.model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 321 |
+
"lm_model.model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 322 |
+
"lm_model.model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 323 |
+
"lm_model.model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 324 |
+
"lm_model.model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 325 |
+
"lm_model.model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 326 |
+
"lm_model.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 327 |
+
"lm_model.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 328 |
+
"lm_model.model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 329 |
+
"lm_model.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 330 |
+
"lm_model.model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 331 |
+
"lm_model.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 332 |
+
"lm_model.model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 333 |
+
"lm_model.model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 334 |
+
"lm_model.model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 335 |
+
"lm_model.model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 336 |
+
"lm_model.model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 337 |
+
"lm_model.model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 338 |
+
"lm_model.model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 339 |
+
"lm_model.model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 340 |
+
"lm_model.model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 341 |
+
"lm_model.model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 342 |
+
"lm_model.model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 343 |
+
"lm_model.model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 344 |
+
"lm_model.model.norm.weight": "model-00003-of-00004.safetensors",
|
| 345 |
+
"vision_proj.0.bias": "model-00004-of-00004.safetensors",
|
| 346 |
+
"vision_proj.0.weight": "model-00004-of-00004.safetensors",
|
| 347 |
+
"vision_proj.2.bias": "model-00004-of-00004.safetensors",
|
| 348 |
+
"vision_proj.2.weight": "model-00004-of-00004.safetensors",
|
| 349 |
+
"vit.vision_tower.vision_model.embeddings.class_embedding": "model-00004-of-00004.safetensors",
|
| 350 |
+
"vit.vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00004-of-00004.safetensors",
|
| 351 |
+
"vit.vision_tower.vision_model.embeddings.position_embedding.weight": "model-00004-of-00004.safetensors",
|
| 352 |
+
"vit.vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
| 353 |
+
"vit.vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
| 354 |
+
"vit.vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
| 355 |
+
"vit.vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
| 356 |
+
"vit.vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
| 357 |
+
"vit.vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
| 358 |
+
"vit.vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
| 359 |
+
"vit.vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
| 360 |
+
"vit.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 361 |
+
"vit.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 362 |
+
"vit.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
| 363 |
+
"vit.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
| 364 |
+
"vit.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 365 |
+
"vit.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 366 |
+
"vit.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 367 |
+
"vit.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 368 |
+
"vit.vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
| 369 |
+
"vit.vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
| 370 |
+
"vit.vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
| 371 |
+
"vit.vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
| 372 |
+
"vit.vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
| 373 |
+
"vit.vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
| 374 |
+
"vit.vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
| 375 |
+
"vit.vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
| 376 |
+
"vit.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 377 |
+
"vit.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 378 |
+
"vit.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
| 379 |
+
"vit.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
| 380 |
+
"vit.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 381 |
+
"vit.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 382 |
+
"vit.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 383 |
+
"vit.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 384 |
+
"vit.vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
| 385 |
+
"vit.vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
| 386 |
+
"vit.vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
| 387 |
+
"vit.vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
| 388 |
+
"vit.vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
| 389 |
+
"vit.vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
| 390 |
+
"vit.vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
| 391 |
+
"vit.vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
| 392 |
+
"vit.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 393 |
+
"vit.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 394 |
+
"vit.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
| 395 |
+
"vit.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
| 396 |
+
"vit.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 397 |
+
"vit.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 398 |
+
"vit.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 399 |
+
"vit.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 400 |
+
"vit.vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
| 401 |
+
"vit.vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
| 402 |
+
"vit.vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
| 403 |
+
"vit.vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
| 404 |
+
"vit.vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
| 405 |
+
"vit.vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
| 406 |
+
"vit.vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
| 407 |
+
"vit.vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
| 408 |
+
"vit.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 409 |
+
"vit.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 410 |
+
"vit.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
| 411 |
+
"vit.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
| 412 |
+
"vit.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 413 |
+
"vit.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 414 |
+
"vit.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 415 |
+
"vit.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 416 |
+
"vit.vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
| 417 |
+
"vit.vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
| 418 |
+
"vit.vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
| 419 |
+
"vit.vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
| 420 |
+
"vit.vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
| 421 |
+
"vit.vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
| 422 |
+
"vit.vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
| 423 |
+
"vit.vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
| 424 |
+
"vit.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 425 |
+
"vit.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 426 |
+
"vit.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
| 427 |
+
"vit.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
| 428 |
+
"vit.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 429 |
+
"vit.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 430 |
+
"vit.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 431 |
+
"vit.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 432 |
+
"vit.vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
| 433 |
+
"vit.vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
| 434 |
+
"vit.vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
| 435 |
+
"vit.vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
| 436 |
+
"vit.vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
| 437 |
+
"vit.vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
| 438 |
+
"vit.vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
| 439 |
+
"vit.vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
| 440 |
+
"vit.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 441 |
+
"vit.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 442 |
+
"vit.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
| 443 |
+
"vit.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
| 444 |
+
"vit.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 445 |
+
"vit.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 446 |
+
"vit.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 447 |
+
"vit.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 448 |
+
"vit.vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
| 449 |
+
"vit.vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
| 450 |
+
"vit.vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
| 451 |
+
"vit.vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
| 452 |
+
"vit.vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
| 453 |
+
"vit.vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
| 454 |
+
"vit.vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
| 455 |
+
"vit.vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
| 456 |
+
"vit.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 457 |
+
"vit.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 458 |
+
"vit.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
| 459 |
+
"vit.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
| 460 |
+
"vit.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 461 |
+
"vit.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 462 |
+
"vit.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 463 |
+
"vit.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 464 |
+
"vit.vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
| 465 |
+
"vit.vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
| 466 |
+
"vit.vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
| 467 |
+
"vit.vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
| 468 |
+
"vit.vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
| 469 |
+
"vit.vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
| 470 |
+
"vit.vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
| 471 |
+
"vit.vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
| 472 |
+
"vit.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 473 |
+
"vit.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 474 |
+
"vit.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
| 475 |
+
"vit.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
| 476 |
+
"vit.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 477 |
+
"vit.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 478 |
+
"vit.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 479 |
+
"vit.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 480 |
+
"vit.vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
| 481 |
+
"vit.vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
| 482 |
+
"vit.vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
| 483 |
+
"vit.vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
| 484 |
+
"vit.vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
| 485 |
+
"vit.vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
| 486 |
+
"vit.vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
| 487 |
+
"vit.vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
| 488 |
+
"vit.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 489 |
+
"vit.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 490 |
+
"vit.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
| 491 |
+
"vit.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
| 492 |
+
"vit.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 493 |
+
"vit.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 494 |
+
"vit.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 495 |
+
"vit.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 496 |
+
"vit.vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
| 497 |
+
"vit.vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
| 498 |
+
"vit.vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
| 499 |
+
"vit.vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
| 500 |
+
"vit.vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
| 501 |
+
"vit.vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
| 502 |
+
"vit.vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
| 503 |
+
"vit.vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
| 504 |
+
"vit.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 505 |
+
"vit.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 506 |
+
"vit.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
| 507 |
+
"vit.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
| 508 |
+
"vit.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 509 |
+
"vit.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 510 |
+
"vit.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 511 |
+
"vit.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 512 |
+
"vit.vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
| 513 |
+
"vit.vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
| 514 |
+
"vit.vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
| 515 |
+
"vit.vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
| 516 |
+
"vit.vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
| 517 |
+
"vit.vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
| 518 |
+
"vit.vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
| 519 |
+
"vit.vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
| 520 |
+
"vit.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 521 |
+
"vit.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 522 |
+
"vit.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
| 523 |
+
"vit.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
| 524 |
+
"vit.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 525 |
+
"vit.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 526 |
+
"vit.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 527 |
+
"vit.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 528 |
+
"vit.vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
| 529 |
+
"vit.vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
| 530 |
+
"vit.vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
| 531 |
+
"vit.vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
| 532 |
+
"vit.vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
| 533 |
+
"vit.vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
| 534 |
+
"vit.vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
| 535 |
+
"vit.vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
| 536 |
+
"vit.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 537 |
+
"vit.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 538 |
+
"vit.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
| 539 |
+
"vit.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
| 540 |
+
"vit.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 541 |
+
"vit.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 542 |
+
"vit.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 543 |
+
"vit.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 544 |
+
"vit.vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
| 545 |
+
"vit.vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
| 546 |
+
"vit.vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
| 547 |
+
"vit.vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
| 548 |
+
"vit.vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
| 549 |
+
"vit.vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
| 550 |
+
"vit.vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
| 551 |
+
"vit.vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
| 552 |
+
"vit.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 553 |
+
"vit.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 554 |
+
"vit.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
| 555 |
+
"vit.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
| 556 |
+
"vit.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 557 |
+
"vit.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 558 |
+
"vit.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 559 |
+
"vit.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 560 |
+
"vit.vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
| 561 |
+
"vit.vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
| 562 |
+
"vit.vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
| 563 |
+
"vit.vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
| 564 |
+
"vit.vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
| 565 |
+
"vit.vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
| 566 |
+
"vit.vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
| 567 |
+
"vit.vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
| 568 |
+
"vit.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 569 |
+
"vit.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 570 |
+
"vit.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
| 571 |
+
"vit.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
| 572 |
+
"vit.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 573 |
+
"vit.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 574 |
+
"vit.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 575 |
+
"vit.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 576 |
+
"vit.vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
| 577 |
+
"vit.vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
| 578 |
+
"vit.vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
| 579 |
+
"vit.vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
| 580 |
+
"vit.vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
| 581 |
+
"vit.vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
| 582 |
+
"vit.vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
| 583 |
+
"vit.vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
| 584 |
+
"vit.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 585 |
+
"vit.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 586 |
+
"vit.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
| 587 |
+
"vit.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
| 588 |
+
"vit.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 589 |
+
"vit.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 590 |
+
"vit.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 591 |
+
"vit.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 592 |
+
"vit.vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
| 593 |
+
"vit.vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
| 594 |
+
"vit.vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
| 595 |
+
"vit.vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
| 596 |
+
"vit.vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
| 597 |
+
"vit.vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
| 598 |
+
"vit.vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
| 599 |
+
"vit.vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
| 600 |
+
"vit.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 601 |
+
"vit.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 602 |
+
"vit.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
| 603 |
+
"vit.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
| 604 |
+
"vit.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 605 |
+
"vit.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 606 |
+
"vit.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 607 |
+
"vit.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 608 |
+
"vit.vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
| 609 |
+
"vit.vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
| 610 |
+
"vit.vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
| 611 |
+
"vit.vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
| 612 |
+
"vit.vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
| 613 |
+
"vit.vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
| 614 |
+
"vit.vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
| 615 |
+
"vit.vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
| 616 |
+
"vit.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 617 |
+
"vit.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 618 |
+
"vit.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
| 619 |
+
"vit.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
| 620 |
+
"vit.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 621 |
+
"vit.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 622 |
+
"vit.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 623 |
+
"vit.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 624 |
+
"vit.vision_tower.vision_model.encoder.layers.24.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
| 625 |
+
"vit.vision_tower.vision_model.encoder.layers.24.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
| 626 |
+
"vit.vision_tower.vision_model.encoder.layers.24.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
| 627 |
+
"vit.vision_tower.vision_model.encoder.layers.24.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
| 628 |
+
"vit.vision_tower.vision_model.encoder.layers.24.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
| 629 |
+
"vit.vision_tower.vision_model.encoder.layers.24.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
| 630 |
+
"vit.vision_tower.vision_model.encoder.layers.24.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
| 631 |
+
"vit.vision_tower.vision_model.encoder.layers.24.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
| 632 |
+
"vit.vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 633 |
+
"vit.vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 634 |
+
"vit.vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
| 635 |
+
"vit.vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
| 636 |
+
"vit.vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 637 |
+
"vit.vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 638 |
+
"vit.vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 639 |
+
"vit.vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 640 |
+
"vit.vision_tower.vision_model.encoder.layers.25.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
| 641 |
+
"vit.vision_tower.vision_model.encoder.layers.25.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
| 642 |
+
"vit.vision_tower.vision_model.encoder.layers.25.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
| 643 |
+
"vit.vision_tower.vision_model.encoder.layers.25.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
| 644 |
+
"vit.vision_tower.vision_model.encoder.layers.25.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
| 645 |
+
"vit.vision_tower.vision_model.encoder.layers.25.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
| 646 |
+
"vit.vision_tower.vision_model.encoder.layers.25.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
| 647 |
+
"vit.vision_tower.vision_model.encoder.layers.25.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
| 648 |
+
"vit.vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 649 |
+
"vit.vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 650 |
+
"vit.vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
| 651 |
+
"vit.vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
| 652 |
+
"vit.vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 653 |
+
"vit.vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 654 |
+
"vit.vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 655 |
+
"vit.vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 656 |
+
"vit.vision_tower.vision_model.encoder.layers.26.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
| 657 |
+
"vit.vision_tower.vision_model.encoder.layers.26.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
| 658 |
+
"vit.vision_tower.vision_model.encoder.layers.26.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
| 659 |
+
"vit.vision_tower.vision_model.encoder.layers.26.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
| 660 |
+
"vit.vision_tower.vision_model.encoder.layers.26.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
| 661 |
+
"vit.vision_tower.vision_model.encoder.layers.26.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
| 662 |
+
"vit.vision_tower.vision_model.encoder.layers.26.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
| 663 |
+
"vit.vision_tower.vision_model.encoder.layers.26.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
| 664 |
+
"vit.vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 665 |
+
"vit.vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 666 |
+
"vit.vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
| 667 |
+
"vit.vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
| 668 |
+
"vit.vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 669 |
+
"vit.vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 670 |
+
"vit.vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 671 |
+
"vit.vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 672 |
+
"vit.vision_tower.vision_model.encoder.layers.27.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
| 673 |
+
"vit.vision_tower.vision_model.encoder.layers.27.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
| 674 |
+
"vit.vision_tower.vision_model.encoder.layers.27.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
| 675 |
+
"vit.vision_tower.vision_model.encoder.layers.27.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
| 676 |
+
"vit.vision_tower.vision_model.encoder.layers.27.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
| 677 |
+
"vit.vision_tower.vision_model.encoder.layers.27.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
| 678 |
+
"vit.vision_tower.vision_model.encoder.layers.27.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
| 679 |
+
"vit.vision_tower.vision_model.encoder.layers.27.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
| 680 |
+
"vit.vision_tower.vision_model.encoder.layers.27.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 681 |
+
"vit.vision_tower.vision_model.encoder.layers.27.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 682 |
+
"vit.vision_tower.vision_model.encoder.layers.27.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
| 683 |
+
"vit.vision_tower.vision_model.encoder.layers.27.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
| 684 |
+
"vit.vision_tower.vision_model.encoder.layers.27.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 685 |
+
"vit.vision_tower.vision_model.encoder.layers.27.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 686 |
+
"vit.vision_tower.vision_model.encoder.layers.27.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 687 |
+
"vit.vision_tower.vision_model.encoder.layers.27.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 688 |
+
"vit.vision_tower.vision_model.encoder.layers.28.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
| 689 |
+
"vit.vision_tower.vision_model.encoder.layers.28.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
| 690 |
+
"vit.vision_tower.vision_model.encoder.layers.28.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
| 691 |
+
"vit.vision_tower.vision_model.encoder.layers.28.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
| 692 |
+
"vit.vision_tower.vision_model.encoder.layers.28.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
| 693 |
+
"vit.vision_tower.vision_model.encoder.layers.28.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
| 694 |
+
"vit.vision_tower.vision_model.encoder.layers.28.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
| 695 |
+
"vit.vision_tower.vision_model.encoder.layers.28.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
| 696 |
+
"vit.vision_tower.vision_model.encoder.layers.28.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 697 |
+
"vit.vision_tower.vision_model.encoder.layers.28.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 698 |
+
"vit.vision_tower.vision_model.encoder.layers.28.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
| 699 |
+
"vit.vision_tower.vision_model.encoder.layers.28.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
| 700 |
+
"vit.vision_tower.vision_model.encoder.layers.28.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 701 |
+
"vit.vision_tower.vision_model.encoder.layers.28.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 702 |
+
"vit.vision_tower.vision_model.encoder.layers.28.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 703 |
+
"vit.vision_tower.vision_model.encoder.layers.28.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 704 |
+
"vit.vision_tower.vision_model.encoder.layers.29.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
| 705 |
+
"vit.vision_tower.vision_model.encoder.layers.29.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
| 706 |
+
"vit.vision_tower.vision_model.encoder.layers.29.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
| 707 |
+
"vit.vision_tower.vision_model.encoder.layers.29.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
| 708 |
+
"vit.vision_tower.vision_model.encoder.layers.29.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
| 709 |
+
"vit.vision_tower.vision_model.encoder.layers.29.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
| 710 |
+
"vit.vision_tower.vision_model.encoder.layers.29.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
| 711 |
+
"vit.vision_tower.vision_model.encoder.layers.29.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
| 712 |
+
"vit.vision_tower.vision_model.encoder.layers.29.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 713 |
+
"vit.vision_tower.vision_model.encoder.layers.29.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 714 |
+
"vit.vision_tower.vision_model.encoder.layers.29.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
| 715 |
+
"vit.vision_tower.vision_model.encoder.layers.29.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
| 716 |
+
"vit.vision_tower.vision_model.encoder.layers.29.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 717 |
+
"vit.vision_tower.vision_model.encoder.layers.29.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 718 |
+
"vit.vision_tower.vision_model.encoder.layers.29.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 719 |
+
"vit.vision_tower.vision_model.encoder.layers.29.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 720 |
+
"vit.vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
| 721 |
+
"vit.vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
| 722 |
+
"vit.vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
| 723 |
+
"vit.vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
| 724 |
+
"vit.vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
| 725 |
+
"vit.vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
| 726 |
+
"vit.vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
| 727 |
+
"vit.vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
| 728 |
+
"vit.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 729 |
+
"vit.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 730 |
+
"vit.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
| 731 |
+
"vit.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
| 732 |
+
"vit.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 733 |
+
"vit.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 734 |
+
"vit.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 735 |
+
"vit.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 736 |
+
"vit.vision_tower.vision_model.encoder.layers.30.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
| 737 |
+
"vit.vision_tower.vision_model.encoder.layers.30.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
| 738 |
+
"vit.vision_tower.vision_model.encoder.layers.30.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
| 739 |
+
"vit.vision_tower.vision_model.encoder.layers.30.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
| 740 |
+
"vit.vision_tower.vision_model.encoder.layers.30.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
| 741 |
+
"vit.vision_tower.vision_model.encoder.layers.30.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
| 742 |
+
"vit.vision_tower.vision_model.encoder.layers.30.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
| 743 |
+
"vit.vision_tower.vision_model.encoder.layers.30.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
| 744 |
+
"vit.vision_tower.vision_model.encoder.layers.30.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 745 |
+
"vit.vision_tower.vision_model.encoder.layers.30.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 746 |
+
"vit.vision_tower.vision_model.encoder.layers.30.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
| 747 |
+
"vit.vision_tower.vision_model.encoder.layers.30.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
| 748 |
+
"vit.vision_tower.vision_model.encoder.layers.30.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 749 |
+
"vit.vision_tower.vision_model.encoder.layers.30.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 750 |
+
"vit.vision_tower.vision_model.encoder.layers.30.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 751 |
+
"vit.vision_tower.vision_model.encoder.layers.30.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 752 |
+
"vit.vision_tower.vision_model.encoder.layers.31.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
| 753 |
+
"vit.vision_tower.vision_model.encoder.layers.31.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
| 754 |
+
"vit.vision_tower.vision_model.encoder.layers.31.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
| 755 |
+
"vit.vision_tower.vision_model.encoder.layers.31.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
| 756 |
+
"vit.vision_tower.vision_model.encoder.layers.31.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
| 757 |
+
"vit.vision_tower.vision_model.encoder.layers.31.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
| 758 |
+
"vit.vision_tower.vision_model.encoder.layers.31.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
| 759 |
+
"vit.vision_tower.vision_model.encoder.layers.31.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
| 760 |
+
"vit.vision_tower.vision_model.encoder.layers.31.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 761 |
+
"vit.vision_tower.vision_model.encoder.layers.31.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 762 |
+
"vit.vision_tower.vision_model.encoder.layers.31.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
| 763 |
+
"vit.vision_tower.vision_model.encoder.layers.31.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
| 764 |
+
"vit.vision_tower.vision_model.encoder.layers.31.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 765 |
+
"vit.vision_tower.vision_model.encoder.layers.31.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 766 |
+
"vit.vision_tower.vision_model.encoder.layers.31.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 767 |
+
"vit.vision_tower.vision_model.encoder.layers.31.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 768 |
+
"vit.vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
| 769 |
+
"vit.vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
| 770 |
+
"vit.vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
| 771 |
+
"vit.vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
| 772 |
+
"vit.vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
| 773 |
+
"vit.vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
| 774 |
+
"vit.vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
| 775 |
+
"vit.vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
| 776 |
+
"vit.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 777 |
+
"vit.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 778 |
+
"vit.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
| 779 |
+
"vit.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
| 780 |
+
"vit.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 781 |
+
"vit.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 782 |
+
"vit.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 783 |
+
"vit.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 784 |
+
"vit.vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
| 785 |
+
"vit.vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
| 786 |
+
"vit.vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
| 787 |
+
"vit.vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
| 788 |
+
"vit.vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
| 789 |
+
"vit.vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
| 790 |
+
"vit.vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
| 791 |
+
"vit.vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
| 792 |
+
"vit.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 793 |
+
"vit.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 794 |
+
"vit.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
| 795 |
+
"vit.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
| 796 |
+
"vit.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 797 |
+
"vit.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 798 |
+
"vit.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 799 |
+
"vit.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 800 |
+
"vit.vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
| 801 |
+
"vit.vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
| 802 |
+
"vit.vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
| 803 |
+
"vit.vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
| 804 |
+
"vit.vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
| 805 |
+
"vit.vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
| 806 |
+
"vit.vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
| 807 |
+
"vit.vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
| 808 |
+
"vit.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 809 |
+
"vit.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 810 |
+
"vit.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
| 811 |
+
"vit.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
| 812 |
+
"vit.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 813 |
+
"vit.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 814 |
+
"vit.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 815 |
+
"vit.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 816 |
+
"vit.vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
| 817 |
+
"vit.vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
| 818 |
+
"vit.vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
| 819 |
+
"vit.vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
| 820 |
+
"vit.vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
| 821 |
+
"vit.vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
| 822 |
+
"vit.vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
| 823 |
+
"vit.vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
| 824 |
+
"vit.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 825 |
+
"vit.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 826 |
+
"vit.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
| 827 |
+
"vit.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
| 828 |
+
"vit.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 829 |
+
"vit.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 830 |
+
"vit.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 831 |
+
"vit.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 832 |
+
"vit.vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
| 833 |
+
"vit.vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
| 834 |
+
"vit.vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
| 835 |
+
"vit.vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
| 836 |
+
"vit.vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
| 837 |
+
"vit.vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
| 838 |
+
"vit.vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
| 839 |
+
"vit.vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
| 840 |
+
"vit.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 841 |
+
"vit.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 842 |
+
"vit.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
| 843 |
+
"vit.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
| 844 |
+
"vit.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 845 |
+
"vit.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 846 |
+
"vit.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 847 |
+
"vit.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 848 |
+
"vit.vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
| 849 |
+
"vit.vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
| 850 |
+
"vit.vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
| 851 |
+
"vit.vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
| 852 |
+
"vit.vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
| 853 |
+
"vit.vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
| 854 |
+
"vit.vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
| 855 |
+
"vit.vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
| 856 |
+
"vit.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 857 |
+
"vit.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 858 |
+
"vit.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
| 859 |
+
"vit.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
| 860 |
+
"vit.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 861 |
+
"vit.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 862 |
+
"vit.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 863 |
+
"vit.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 864 |
+
"vit.vision_tower.vision_model.post_layernorm.bias": "model-00004-of-00004.safetensors",
|
| 865 |
+
"vit.vision_tower.vision_model.post_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 866 |
+
"vit.vision_tower.vision_model.pre_layrnorm.bias": "model-00004-of-00004.safetensors",
|
| 867 |
+
"vit.vision_tower.vision_model.pre_layrnorm.weight": "model-00004-of-00004.safetensors"
|
| 868 |
+
}
|
| 869 |
+
}
|
modeling_mcmd.py
ADDED
|
@@ -0,0 +1,512 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#basic backage
|
| 2 |
+
import os
|
| 3 |
+
import copy
|
| 4 |
+
import warnings
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from typing import Optional, Tuple, Union, List, Callable
|
| 7 |
+
|
| 8 |
+
#torch and transformer
|
| 9 |
+
import torch
|
| 10 |
+
from torch import nn
|
| 11 |
+
from torch.nn import CrossEntropyLoss
|
| 12 |
+
from torch.distributions.categorical import Categorical
|
| 13 |
+
|
| 14 |
+
from torchvision import transforms
|
| 15 |
+
from torchvision.transforms.functional import InterpolationMode
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 19 |
+
from transformers.generation.streamers import BaseStreamer
|
| 20 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 21 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
#mcmd
|
| 25 |
+
from .configuration_mcmd import mcmdConfig
|
| 26 |
+
from .Vision_Tower import clip_vit_large_patch14_336,DFN5B_CLIP_ViT_H_14_378
|
| 27 |
+
from .Vision_Project import mlp2x_gelu
|
| 28 |
+
|
| 29 |
+
def build_lm_model_tokenizer(lm_model_name : str, lm_tokenizer_name : str):
|
| 30 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 31 |
+
lm_model_name,
|
| 32 |
+
torch_dtype="auto"
|
| 33 |
+
)
|
| 34 |
+
tokenizer = AutoTokenizer.from_pretrained(lm_tokenizer_name)
|
| 35 |
+
return model,tokenizer
|
| 36 |
+
|
| 37 |
+
def build_vision_projector(vision_config):
|
| 38 |
+
if vision_config=='mlp2x_gelu':
|
| 39 |
+
return mlp2x_gelu(vision_config)
|
| 40 |
+
|
| 41 |
+
def build_vision_tower(vision_tower_name=''):
|
| 42 |
+
if vision_tower_name.endswith('clip-vit-large-patch14-336'):
|
| 43 |
+
return clip_vit_large_patch14_336(vision_tower_name,use_resize_pos=True)
|
| 44 |
+
elif vision_tower_name.endswith('DFN5B-CLIP-ViT-H-14-378'):
|
| 45 |
+
return DFN5B_CLIP_ViT_H_14_378(vision_tower_name)
|
| 46 |
+
|
| 47 |
+
class mcmdPreTrainedModel(PreTrainedModel):
|
| 48 |
+
# config_class = mcmdConfig
|
| 49 |
+
|
| 50 |
+
def _init_weights(self, module):
|
| 51 |
+
std = self.config.initializer_range
|
| 52 |
+
if isinstance(module, nn.Linear):
|
| 53 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 54 |
+
if module.bias is not None:
|
| 55 |
+
module.bias.data.zero_()
|
| 56 |
+
elif isinstance(module, nn.Embedding):
|
| 57 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 58 |
+
if module.padding_idx is not None:
|
| 59 |
+
module.weight.data[module.padding_idx].zero_()
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class mcmdForCausalLM(mcmdPreTrainedModel):
|
| 63 |
+
_auto_class = 'AutoModelForCausalLM'
|
| 64 |
+
|
| 65 |
+
def __init__(self, config):
|
| 66 |
+
super().__init__(config)
|
| 67 |
+
|
| 68 |
+
#Initialize language model
|
| 69 |
+
self.max_length = config.max_length
|
| 70 |
+
self.vocab_size = config.lm_model['vocab_size']
|
| 71 |
+
self.lm_model,self.lm_tokenizer = build_lm_model_tokenizer(config.lm_path,config.lm_path)
|
| 72 |
+
|
| 73 |
+
#Initialize vit and vision_proj
|
| 74 |
+
self.vit = build_vision_tower(config.clip_path)
|
| 75 |
+
self.vision_proj = build_vision_projector(config.vision_config)
|
| 76 |
+
|
| 77 |
+
# Initialize vis_processor for Image Preprocessing. The mean and std is equal in dfn5b and clip-vit
|
| 78 |
+
self.vis_processor = transforms.Compose([
|
| 79 |
+
transforms.Resize((config.input_img_size, config.input_img_size),
|
| 80 |
+
interpolation=InterpolationMode.BICUBIC),
|
| 81 |
+
transforms.ToTensor(),
|
| 82 |
+
transforms.Normalize((0.48145466, 0.4578275, 0.40821073),
|
| 83 |
+
(0.26862954, 0.26130258, 0.27577711)),
|
| 84 |
+
])
|
| 85 |
+
|
| 86 |
+
self.eos_token_id = self.lm_tokenizer.eos_token_id # 151645 <|im_end|>
|
| 87 |
+
|
| 88 |
+
def print_trainable_parameters(self):
|
| 89 |
+
print('可训练参数:')
|
| 90 |
+
trainable_params = 0
|
| 91 |
+
all_param = 0
|
| 92 |
+
for _, param in self.named_parameters():
|
| 93 |
+
all_param += param.numel()
|
| 94 |
+
if param.requires_grad:
|
| 95 |
+
trainable_params += param.numel()
|
| 96 |
+
print(f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param:.2f}")
|
| 97 |
+
|
| 98 |
+
print('可训练的模块:')
|
| 99 |
+
for name, param in self.named_parameters():
|
| 100 |
+
if param.requires_grad:
|
| 101 |
+
print(name, param.shape)
|
| 102 |
+
|
| 103 |
+
def print_model_layers_and_parameters(self):
|
| 104 |
+
print('模型参数:')
|
| 105 |
+
for name, module in self.named_modules():
|
| 106 |
+
if hasattr(module, 'weight'):
|
| 107 |
+
num_params = sum(p.numel() for p in module.parameters() if p.requires_grad)
|
| 108 |
+
print(f"Layer: {name}, Type: {module.__class__.__name__}, Trainable Parameters: {num_params}")
|
| 109 |
+
else:
|
| 110 |
+
print(f"Layer: {name}, Type: {module.__class__.__name__}, No trainable parameters")
|
| 111 |
+
|
| 112 |
+
def print_tokens_labels(self, tokens: List[int], target: List[int]):
|
| 113 |
+
print("Sanity Check >>>>>>>>>>>>>")
|
| 114 |
+
temp_tokens=copy.deepcopy(tokens[0].tolist())
|
| 115 |
+
temp_target=copy.deepcopy(target[0].tolist())
|
| 116 |
+
save_name='check_token_target.txt'
|
| 117 |
+
if os.path.exists(save_name):
|
| 118 |
+
os.remove(save_name)
|
| 119 |
+
ff = open(save_name,'a+')
|
| 120 |
+
for t, m in zip(temp_tokens, temp_target):
|
| 121 |
+
if t<0:
|
| 122 |
+
decoded='<Image Data>'
|
| 123 |
+
else:
|
| 124 |
+
decoded = self.lm_tokenizer.batch_decode([t], skip_special_tokens=False)[0]
|
| 125 |
+
print("%20s: %6d -> %6d" % (repr(decoded), t, m))
|
| 126 |
+
ff.write("%20s: %6d -> %6d\n" % (repr(decoded), t, m))
|
| 127 |
+
ff.close()
|
| 128 |
+
print("<<<<<<<<<<<<< Sanity Check")
|
| 129 |
+
assert len(tokens) == len(target), f"length mismatch: {len(tokens)} vs {len(target)}"
|
| 130 |
+
|
| 131 |
+
def img2emb(self, image):
|
| 132 |
+
image=image.bfloat16()
|
| 133 |
+
img_embeds = self.vision_proj(self.vit(image.to(self.device)))
|
| 134 |
+
atts_img = torch.ones(
|
| 135 |
+
img_embeds.size()[:-1], dtype=torch.long).to(img_embeds.device)
|
| 136 |
+
|
| 137 |
+
img_target = torch.ones(
|
| 138 |
+
img_embeds.size()[:2], dtype=torch.long).to(
|
| 139 |
+
img_embeds.device) * -100
|
| 140 |
+
|
| 141 |
+
return img_embeds, atts_img, img_target
|
| 142 |
+
|
| 143 |
+
def encode_img(self, image):
|
| 144 |
+
if image is None:
|
| 145 |
+
return None
|
| 146 |
+
if isinstance(image, str):
|
| 147 |
+
image = Image.open(image).convert('RGB')
|
| 148 |
+
# Image Preprocessing
|
| 149 |
+
# unsqueeze insert 1 dim in front of 0
|
| 150 |
+
# image is [1, 3, 490, 490]
|
| 151 |
+
image = self.vis_processor(image).unsqueeze(0).to(self.device)
|
| 152 |
+
else:
|
| 153 |
+
assert isinstance(image, torch.Tensor)
|
| 154 |
+
|
| 155 |
+
img_embeds, _, _ = self.img2emb(image)
|
| 156 |
+
'''
|
| 157 |
+
img_embeds : [1, 1225, 4096] 1225?
|
| 158 |
+
atts_img = torch.ones([1, 1225])
|
| 159 |
+
img_target = torch.ones([1, 1225]) * -100
|
| 160 |
+
'''
|
| 161 |
+
return img_embeds
|
| 162 |
+
|
| 163 |
+
def get_tensor_image(self,fns):
|
| 164 |
+
image_data=[]
|
| 165 |
+
|
| 166 |
+
for one in fns:
|
| 167 |
+
t_one=self.encode_img(one)
|
| 168 |
+
image_data.append(t_one)
|
| 169 |
+
|
| 170 |
+
image = torch.cat(image_data, dim=0)
|
| 171 |
+
|
| 172 |
+
return image
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
def interleav_wrap_chat(self, messages, image):
|
| 176 |
+
|
| 177 |
+
#Deal prompt using qwen2 template, which is from transformers/tokenization_utils_base.py
|
| 178 |
+
prompt = self.lm_tokenizer.apply_chat_template(
|
| 179 |
+
messages,
|
| 180 |
+
tokenize=False,
|
| 181 |
+
add_generation_prompt=True
|
| 182 |
+
)
|
| 183 |
+
'''
|
| 184 |
+
repr(prompt) add_generation_prompt=True : '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n比较一下下面这两张图片,第一张<ImageHere>,\n第二张<ImageHere><|im_end|>\n<|im_start|>assistant\n'
|
| 185 |
+
repr(prompt) add_generation_prompt=False: '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n比较一下下面这两张图片,第一张<ImageHere>,\n第二张<ImageHere><|im_end|>\n'
|
| 186 |
+
'''
|
| 187 |
+
|
| 188 |
+
if image is None:
|
| 189 |
+
im_len=0
|
| 190 |
+
image_nums=0
|
| 191 |
+
parts = prompt.split('<ImageHere>')
|
| 192 |
+
print(prompt.split('<ImageHere>'))
|
| 193 |
+
assert len(prompt.split('<ImageHere>'))==1
|
| 194 |
+
else:
|
| 195 |
+
im_len = image.shape[1] #1225 730
|
| 196 |
+
image_nums = len(image)
|
| 197 |
+
parts = prompt.split('<ImageHere>')
|
| 198 |
+
wrap_embeds = []
|
| 199 |
+
temp_len = 0
|
| 200 |
+
|
| 201 |
+
if len(parts) != image_nums + 1:
|
| 202 |
+
raise ValueError('Invalid <ImageHere> prompt format.')
|
| 203 |
+
|
| 204 |
+
for idx, part in enumerate(parts):
|
| 205 |
+
if len(part) > 0:
|
| 206 |
+
part_tokens = self.lm_tokenizer(part, return_tensors='pt').to(self.device)
|
| 207 |
+
part_embeds = self.lm_model.model.embed_tokens(
|
| 208 |
+
part_tokens.input_ids)
|
| 209 |
+
wrap_embeds.append(part_embeds)
|
| 210 |
+
|
| 211 |
+
temp_len += part_embeds.shape[1]
|
| 212 |
+
if idx < image_nums:
|
| 213 |
+
wrap_embeds.append(image[idx].unsqueeze(0))
|
| 214 |
+
temp_len += im_len
|
| 215 |
+
|
| 216 |
+
if temp_len > self.max_length:
|
| 217 |
+
break
|
| 218 |
+
|
| 219 |
+
wrap_embeds = torch.cat(wrap_embeds, dim=1) #torch.Size([1, 2481, 3584])
|
| 220 |
+
wrap_embeds = wrap_embeds[:, :self.max_length].to(self.device)
|
| 221 |
+
|
| 222 |
+
inputs = {
|
| 223 |
+
'inputs_embeds': wrap_embeds
|
| 224 |
+
}
|
| 225 |
+
return inputs
|
| 226 |
+
|
| 227 |
+
def mask_user_targets(self, input_ids):
|
| 228 |
+
target_batch = []
|
| 229 |
+
for bs in range(input_ids.shape[0]):
|
| 230 |
+
ids = input_ids[bs]
|
| 231 |
+
targets = copy.deepcopy(ids)
|
| 232 |
+
im_round=0
|
| 233 |
+
id_im_start=0
|
| 234 |
+
# id_im_end=0
|
| 235 |
+
for i, temp_id in enumerate(ids):
|
| 236 |
+
if temp_id == 151644:
|
| 237 |
+
im_round+=1
|
| 238 |
+
if im_round==2:
|
| 239 |
+
id_im_start=0
|
| 240 |
+
targets[id_im_start:i + 1] = -100
|
| 241 |
+
id_im_start=i
|
| 242 |
+
elif im_round%2==0:
|
| 243 |
+
id_im_start=i
|
| 244 |
+
elif im_round%2==1:
|
| 245 |
+
targets[id_im_start:i + 3] = -100
|
| 246 |
+
# if temp_id == 151645:
|
| 247 |
+
# if im_round==1:
|
| 248 |
+
# id_im_end=i
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
target_batch.append(targets.unsqueeze(0))
|
| 252 |
+
|
| 253 |
+
target_batch = torch.cat(target_batch, dim=0)
|
| 254 |
+
return target_batch
|
| 255 |
+
|
| 256 |
+
def interleav_wrap(self, img_list, text_list):
|
| 257 |
+
# Initialize lists to store the processed embeddings, attention masks, and targets.
|
| 258 |
+
wrap_embeds_list, wrap_atts_list = [], []
|
| 259 |
+
wrap_target_list = []
|
| 260 |
+
|
| 261 |
+
# Iterate over pairs of images and texts.
|
| 262 |
+
for image, text in zip(img_list, text_list):
|
| 263 |
+
# Convert the image to embeddings using the method `img2emb`.
|
| 264 |
+
img_embeds, atts_img, img_target = self.img2emb(image)
|
| 265 |
+
|
| 266 |
+
# Get the first element of the text (assuming it's a list).
|
| 267 |
+
text = text[0]
|
| 268 |
+
# Split the text into parts where `<ImageHere>` is found.
|
| 269 |
+
parts = text.split('<ImageHere>')
|
| 270 |
+
|
| 271 |
+
# Initialize lists to store tokens, embeddings, and attention masks for the current item.
|
| 272 |
+
wrap_tokens, wrap_embeds, wrap_atts = [], [], []
|
| 273 |
+
|
| 274 |
+
# Track the total length of the sequence being built.
|
| 275 |
+
temp_len = 0
|
| 276 |
+
|
| 277 |
+
# Get the number of images and the length of each image embedding.
|
| 278 |
+
image_nums, im_len = img_embeds.shape[:2]
|
| 279 |
+
|
| 280 |
+
# Process each part of the split text.
|
| 281 |
+
for idx, part in enumerate(parts):
|
| 282 |
+
# If the part is not empty, process it as text.
|
| 283 |
+
if len(part) > 0:
|
| 284 |
+
# Tokenize the text part.
|
| 285 |
+
part_tokens = self.lm_tokenizer(
|
| 286 |
+
part,
|
| 287 |
+
return_tensors='pt',
|
| 288 |
+
padding='longest').to(self.device)
|
| 289 |
+
|
| 290 |
+
# Append the token IDs, embeddings, and attention mask to their respective lists.
|
| 291 |
+
wrap_tokens.append(part_tokens.input_ids)
|
| 292 |
+
part_embeds = self.lm_model.model.embed_tokens(part_tokens.input_ids)
|
| 293 |
+
wrap_embeds.append(part_embeds)
|
| 294 |
+
wrap_atts.append(part_tokens.attention_mask)
|
| 295 |
+
|
| 296 |
+
# Update the total length of the sequence.
|
| 297 |
+
temp_len += part_embeds.shape[1]
|
| 298 |
+
|
| 299 |
+
# If there are more images, append the image target, embeddings, and attention mask.
|
| 300 |
+
if idx < image_nums:
|
| 301 |
+
wrap_tokens.append(img_target[idx].unsqueeze(0))
|
| 302 |
+
wrap_embeds.append(img_embeds[idx].unsqueeze(0))
|
| 303 |
+
wrap_atts.append(atts_img[idx].unsqueeze(0))
|
| 304 |
+
|
| 305 |
+
# Update the total length of the sequence.
|
| 306 |
+
temp_len += im_len
|
| 307 |
+
|
| 308 |
+
# Break the loop if the total length exceeds the maximum length.
|
| 309 |
+
if temp_len > self.max_length:
|
| 310 |
+
break
|
| 311 |
+
|
| 312 |
+
# Concatenate the tokens, embeddings, and attention masks.
|
| 313 |
+
wrap_tokens = torch.cat(wrap_tokens, dim=1)
|
| 314 |
+
wrap_embeds = torch.cat(wrap_embeds, dim=1)
|
| 315 |
+
wrap_atts = torch.cat(wrap_atts, dim=1)
|
| 316 |
+
|
| 317 |
+
# print('wrap_tokens',wrap_tokens.shape)
|
| 318 |
+
# print('wrap_embeds',wrap_embeds.shape)
|
| 319 |
+
# print('wrap_atts',wrap_atts.shape)
|
| 320 |
+
|
| 321 |
+
# Mask the targets for the tokens.
|
| 322 |
+
wrap_target = self.mask_user_targets(wrap_tokens).to(self.device)
|
| 323 |
+
|
| 324 |
+
# Truncate the concatenated tensors to the max length.
|
| 325 |
+
wrap_embeds = wrap_embeds[:, :self.max_length].to(self.device)
|
| 326 |
+
wrap_atts = wrap_atts[:, :self.max_length].to(self.device)
|
| 327 |
+
wrap_target = wrap_target[:, :self.max_length].to(self.device)
|
| 328 |
+
|
| 329 |
+
# self.print_tokens_labels(wrap_tokens, wrap_target)
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
# Add the processed data to the corresponding lists.
|
| 333 |
+
wrap_embeds_list.append(wrap_embeds)
|
| 334 |
+
wrap_atts_list.append(wrap_atts)
|
| 335 |
+
wrap_target_list.append(wrap_target)
|
| 336 |
+
|
| 337 |
+
# Concatenate all the processed data from different items.
|
| 338 |
+
wrap_embeds = torch.cat(wrap_embeds_list)
|
| 339 |
+
wrap_atts = torch.cat(wrap_atts_list)
|
| 340 |
+
wrap_target = torch.cat(wrap_target_list)
|
| 341 |
+
|
| 342 |
+
# Return the concatenated embeddings, attention masks, and targets.
|
| 343 |
+
return wrap_embeds, wrap_atts, wrap_target
|
| 344 |
+
|
| 345 |
+
def text2emb(self, text, add_special=False):
|
| 346 |
+
|
| 347 |
+
to_regress_tokens = self.lm_tokenizer(
|
| 348 |
+
text,
|
| 349 |
+
return_tensors='pt',
|
| 350 |
+
padding='longest').to(self.device)
|
| 351 |
+
to_regress_tokens.input_ids
|
| 352 |
+
targets = self.mask_user_targets(to_regress_tokens.input_ids)
|
| 353 |
+
targets = targets.to(self.device)
|
| 354 |
+
|
| 355 |
+
# self.print_tokens_labels(to_regress_tokens.input_ids, targets)
|
| 356 |
+
|
| 357 |
+
return to_regress_tokens, targets
|
| 358 |
+
|
| 359 |
+
def forward(
|
| 360 |
+
self,
|
| 361 |
+
input_ids: torch.LongTensor = None,
|
| 362 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 363 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 364 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 365 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 366 |
+
labels: Optional[torch.LongTensor] = None,
|
| 367 |
+
use_cache: Optional[bool] = None,
|
| 368 |
+
output_attentions: Optional[bool] = None,
|
| 369 |
+
output_hidden_states: Optional[bool] = None,
|
| 370 |
+
return_dict: Optional[bool] = None,
|
| 371 |
+
**kwargs
|
| 372 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 373 |
+
r"""
|
| 374 |
+
Args:
|
| 375 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 376 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 377 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 378 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 379 |
+
|
| 380 |
+
Returns:
|
| 381 |
+
|
| 382 |
+
```"""
|
| 383 |
+
# prepared for train mode
|
| 384 |
+
samples = kwargs.get('samples', None)
|
| 385 |
+
if samples:
|
| 386 |
+
if samples['data_type'][0] == 'text':
|
| 387 |
+
has_img = False
|
| 388 |
+
elif samples['data_type'][0] == 'multi':
|
| 389 |
+
has_img = True
|
| 390 |
+
else:
|
| 391 |
+
raise NotImplementedError
|
| 392 |
+
|
| 393 |
+
# encode text
|
| 394 |
+
text = samples['text_input']
|
| 395 |
+
# encode image
|
| 396 |
+
if has_img:
|
| 397 |
+
image = samples['image']
|
| 398 |
+
|
| 399 |
+
to_regress_embeds, attention_mask, targets = self.interleav_wrap(
|
| 400 |
+
image, text)
|
| 401 |
+
else:
|
| 402 |
+
to_regress_tokens, targets = self.text2emb(#-------------------------------------------------------------------------------------------
|
| 403 |
+
text, add_special=True)
|
| 404 |
+
to_regress_embeds = self.lm_model.model.embed_tokens(#-------------------------------------------------------------------------------------------
|
| 405 |
+
to_regress_tokens.input_ids)
|
| 406 |
+
attention_mask = to_regress_tokens.attention_mask
|
| 407 |
+
|
| 408 |
+
inputs_embeds = to_regress_embeds[:, :self.max_length]
|
| 409 |
+
attention_mask = attention_mask[:, :self.max_length]
|
| 410 |
+
targets = targets[:, :self.max_length]
|
| 411 |
+
labels = targets
|
| 412 |
+
|
| 413 |
+
|
| 414 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 415 |
+
output_hidden_states = (
|
| 416 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 417 |
+
)
|
| 418 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 419 |
+
|
| 420 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 421 |
+
outputs = self.lm_model.model(
|
| 422 |
+
input_ids=input_ids,
|
| 423 |
+
attention_mask=attention_mask,
|
| 424 |
+
position_ids=position_ids,
|
| 425 |
+
past_key_values=past_key_values,
|
| 426 |
+
inputs_embeds=inputs_embeds,
|
| 427 |
+
use_cache=use_cache,
|
| 428 |
+
output_attentions=output_attentions,
|
| 429 |
+
output_hidden_states=output_hidden_states,
|
| 430 |
+
return_dict=return_dict,
|
| 431 |
+
)
|
| 432 |
+
|
| 433 |
+
hidden_states = outputs[0]
|
| 434 |
+
logits = self.lm_model.lm_head(hidden_states)
|
| 435 |
+
logits = logits.float()
|
| 436 |
+
|
| 437 |
+
loss = None
|
| 438 |
+
if labels is not None:
|
| 439 |
+
# Shift so that tokens < n predict n
|
| 440 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 441 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 442 |
+
# Flatten the tokens
|
| 443 |
+
loss_fct = CrossEntropyLoss()
|
| 444 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
| 445 |
+
shift_labels = shift_labels.view(-1)
|
| 446 |
+
# Enable model parallelism
|
| 447 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 448 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 449 |
+
|
| 450 |
+
if not return_dict:
|
| 451 |
+
output = (logits,) + outputs[1:]
|
| 452 |
+
return (loss,) + output if loss is not None else output
|
| 453 |
+
|
| 454 |
+
return CausalLMOutputWithPast(
|
| 455 |
+
loss=loss,
|
| 456 |
+
logits=logits,
|
| 457 |
+
past_key_values=outputs.past_key_values,
|
| 458 |
+
hidden_states=outputs.hidden_states,
|
| 459 |
+
attentions=outputs.attentions,
|
| 460 |
+
)
|
| 461 |
+
|
| 462 |
+
@torch.no_grad()
|
| 463 |
+
def chat(
|
| 464 |
+
self,
|
| 465 |
+
messages,
|
| 466 |
+
images: List[str] = None,
|
| 467 |
+
streamer: Optional[BaseStreamer] = None,
|
| 468 |
+
max_new_tokens: int = 1024,
|
| 469 |
+
do_sample: bool = True,
|
| 470 |
+
num_beams: int = 1,
|
| 471 |
+
temperature: float = 1.0,
|
| 472 |
+
top_p: float = 0.8,
|
| 473 |
+
repetition_penalty: float=1.005,
|
| 474 |
+
**kwargs,
|
| 475 |
+
):
|
| 476 |
+
if images!=[]:
|
| 477 |
+
print('images ',images)
|
| 478 |
+
image_pt=self.get_tensor_image(images)
|
| 479 |
+
else:
|
| 480 |
+
image_pt=None
|
| 481 |
+
inputs=self.interleav_wrap_chat(messages,image_pt)
|
| 482 |
+
|
| 483 |
+
inputs = {
|
| 484 |
+
k: v.to(self.device)
|
| 485 |
+
for k, v in inputs.items() if torch.is_tensor(v)
|
| 486 |
+
}
|
| 487 |
+
# also add end-of-assistant token in eos token id to avoid unnecessary generation
|
| 488 |
+
eos_token_id = [
|
| 489 |
+
self.eos_token_id
|
| 490 |
+
]
|
| 491 |
+
outputs = self.lm_model.generate(
|
| 492 |
+
**inputs,
|
| 493 |
+
streamer=streamer,
|
| 494 |
+
max_new_tokens=max_new_tokens,
|
| 495 |
+
num_beams=num_beams,
|
| 496 |
+
do_sample=do_sample,
|
| 497 |
+
temperature=temperature,
|
| 498 |
+
top_p=top_p,
|
| 499 |
+
eos_token_id=eos_token_id,
|
| 500 |
+
repetition_penalty=repetition_penalty,
|
| 501 |
+
**kwargs,
|
| 502 |
+
)
|
| 503 |
+
|
| 504 |
+
response = self.lm_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
| 505 |
+
messages+=[{"role": "assistant", "content": response}]
|
| 506 |
+
|
| 507 |
+
return response, messages
|
| 508 |
+
|
| 509 |
+
|
| 510 |
+
|
| 511 |
+
|
| 512 |
+
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>"
|
| 5 |
+
],
|
| 6 |
+
"eos_token": {
|
| 7 |
+
"content": "<|im_end|>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false
|
| 12 |
+
},
|
| 13 |
+
"pad_token": {
|
| 14 |
+
"content": "<|endoftext|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false
|
| 19 |
+
}
|
| 20 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"added_tokens_decoder": {
|
| 4 |
+
"151643": {
|
| 5 |
+
"content": "<|endoftext|>",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": false,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"special": true
|
| 11 |
+
},
|
| 12 |
+
"151644": {
|
| 13 |
+
"content": "<|im_start|>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": false,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false,
|
| 18 |
+
"special": true
|
| 19 |
+
},
|
| 20 |
+
"151645": {
|
| 21 |
+
"content": "<|im_end|>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": false,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false,
|
| 26 |
+
"special": true
|
| 27 |
+
}
|
| 28 |
+
},
|
| 29 |
+
"additional_special_tokens": [
|
| 30 |
+
"<|im_start|>",
|
| 31 |
+
"<|im_end|>"
|
| 32 |
+
],
|
| 33 |
+
"bos_token": null,
|
| 34 |
+
"chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
| 35 |
+
"clean_up_tokenization_spaces": false,
|
| 36 |
+
"eos_token": "<|im_end|>",
|
| 37 |
+
"errors": "replace",
|
| 38 |
+
"model_max_length": 131072,
|
| 39 |
+
"pad_token": "<|endoftext|>",
|
| 40 |
+
"split_special_tokens": false,
|
| 41 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 42 |
+
"unk_token": null
|
| 43 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b31d1f19850dd4d60172d22b93ed93f1986f7ca07edf7291521197e6fda401bd
|
| 3 |
+
size 6392
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|