File size: 6,256 Bytes
06529d6 4c7f237 06529d6 61f9d02 06529d6 7a7f4ae 06529d6 4c7f237 06529d6 4c7f237 06529d6 4c7f237 06529d6 61f9d02 06529d6 61f9d02 06529d6 f3ce108 06529d6 b551150 f3ce108 06529d6 7a7f4ae 06529d6 7a7f4ae c580bba 7a7f4ae 06529d6 61f9d02 06529d6 7a7f4ae 06529d6 61f9d02 06529d6 61f9d02 7a7f4ae 06529d6 61f9d02 06529d6 4c7f237 06529d6 61f9d02 06529d6 b551150 f3ce108 06529d6 61f9d02 06529d6 4c7f237 06529d6 61f9d02 06529d6 4c7f237 06529d6 0585bb7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
---
language: en
license: mit
tags:
- image-classification
- imagenet
- multi-scale
- feature-geometry
- david
datasets:
- imagenet-1k
metrics:
- accuracy
model-index:
- name: David-decoupled-deep_efficiency
results:
- task:
type: image-classification
dataset:
name: ImageNet-1K
type: imagenet-1k
metrics:
- type: accuracy
value: 62.94
---
# David: Multi-Scale Feature Classifier
**David** is a multi-scale deep learning classifier that uses feature geometry (pentachora/4-simplexes)
as class prototypes with role-weighted similarity computation (Rose Loss).
This version is using multiple variations of clip-vit inputs simultaneously into shared space.
The experiment will determine if entirely deviant variations such as clip-vit-b-patch32 and patch16 can
exist simultaneously in the same shared space with the correct checks and spacings applied.
## Model Details
### Architecture
- **Preset**: gated_expert_team
- **Sharing Mode**: decoupled
- **Fusion Mode**: deep_efficiency
- **Scales**: [128, 256, 384, 448, 512, 576, 640, 768, 896]
- **Feature Dim**: 512
- **Parameters**: 22,133,801
### Training Configuration
- **Dataset**: AbstractPhil/imagenet-clip-features-orderly
- **Model Variant**: ['clip_vit_b16', 'clip_vit_laion_b32', 'clip_vit_b32']
- **Epochs**: 10
- **Batch Size**: 1024
- **Learning Rate**: 0.01
- **Rose Loss Weight**: 0.1 β 0.8
- **Cayley Loss**: False
## Performance
### Best Results
- **Validation Accuracy**: 62.94%
- **Best Epoch**: 9
- **Final Train Accuracy**: 61.07%
### Per-Scale Performance
- **Scale 128**: 62.94%
- **Scale 256**: 71.08%
- **Scale 384**: 73.44%
- **Scale 448**: 74.29%
- **Scale 512**: 74.61%
- **Scale 576**: 75.04%
- **Scale 640**: 75.18%
- **Scale 768**: 75.58%
- **Scale 896**: 75.90%
## Usage
### Quick Model Lookup
**Check `MODELS_INDEX.json` in the repo root** - it lists all trained models sorted by accuracy with links to weights and configs.
### Repository Structure
```
AbstractPhil/david-shared-space/
βββ MODELS_INDEX.json # π Master index of all models (sorted by accuracy)
βββ README.md # This file
βββ best_model.json # Latest best model info
βββ weights/
β βββ david_gated_expert_team/
β βββ 20251013_004438/
β βββ MODEL_SUMMARY.txt # π― Human-readable performance summary
β βββ training_history.json # π Epoch-by-epoch training curve
β βββ best_model_acc62.94.safetensors # β Accuracy in filename!
β βββ best_model_acc62.94_metadata.json
β βββ final_model.safetensors
β βββ checkpoint_epoch_X_accYY.YY.safetensors
β βββ david_config.json
β βββ train_config.json
βββ runs/
βββ david_gated_expert_team/
βββ 20251013_004438/
βββ events.out.tfevents.* # TensorBoard logs
```
### Loading the Model
```python
from geovocab2.train.model.core.david import David, DavidArchitectureConfig
from huggingface_hub import hf_hub_download
# Browse available models in MODELS_INDEX.json first!
# Specify model variant and run
model_name = "david_gated_expert_team"
run_id = "20251013_004438"
accuracy = "62.94" # From MODELS_INDEX.json
# Download config
config_path = hf_hub_download(
repo_id="AbstractPhil/david-shared-space",
filename=f"weights/{model_name}/{run_id}/david_config.json"
)
config = DavidArchitectureConfig.from_json(config_path)
# Download weights (accuracy in filename!)
weights_path = hf_hub_download(
repo_id="AbstractPhil/david-shared-space",
filename=f"weights/{model_name}/{run_id}/best_model_acc{accuracy}.safetensors"
)
# Download training history (optional - see full training curve)
history_path = hf_hub_download(
repo_id="AbstractPhil/david-shared-space",
filename=f"weights/{model_name}/{run_id}/training_history.json"
)
# Load model
from safetensors.torch import load_file
david = David.from_config(config)
david.load_state_dict(load_file(weights_path))
david.eval()
```
### Inference
```python
import torch
import torch.nn.functional as F
# Assuming you have CLIP features (512-dim for ViT-B/16)
features = get_clip_features(image) # [1, 512]
# Load anchors
anchors_dict = torch.load("anchors.pth")
# Forward pass
with torch.no_grad():
logits, _ = david(features, anchors_dict)
predictions = logits.argmax(dim=-1)
```
## Architecture Overview
### Multi-Scale Processing
David processes inputs at multiple scales (128, 256, 384, 448, 512, 576, 640, 768, 896),
allowing it to capture both coarse and fine-grained features.
### Shared Representation Space
This variation shares multiple versions of clip-vit models in the same representation space.
### Feature Geometry
Each class is represented by a pentachoron (4-simplex) in embedding space with 5 vertices:
- **Anchor**: Primary class representative
- **Need**: Complementary direction
- **Relation**: Contextual alignment
- **Purpose**: Functional direction
- **Observer**: Meta-perspective
### Rose Loss
Similarity computation uses role-weighted cosine similarities:
```
score = w_anchor * sim(z, anchor) + w_need * sim(z, need) + ...
```
### Fusion Strategy
**deep_efficiency**: Intelligently combines predictions from multiple scales.
## Training Details
### Loss Components
- **Cross-Entropy**: Standard classification loss
- **Rose Loss**: Pentachora role-weighted margin loss (weight: 0.1β0.8)
- **Cayley Loss**: Geometric regularization (disabled)
### Optimization
- **Optimizer**: AdamW
- **Weight Decay**: 1e-05
- **Scheduler**: cosine_restarts
- **Gradient Clip**: 10.0
- **Mixed Precision**: False
## Citation
```bibtex
@software{david_classifier_2025,
title = {David: Multi-Scale Feature Classifier},
author = {AbstractPhil},
year = {2025},
url = {https://huggingface.co/AbstractPhil/david-shared-space},
note = {Run ID: 20251013_004438}
}
```
## License
MIT License
## Acknowledgments
Built with feature lattice geometry and multi-scale deep learning.
Special thanks to Claude (Anthropic) for debugging assistance.
---
*Generated on 2025-10-13 01:33:26*
|