File size: 6,256 Bytes
06529d6
 
 
 
 
 
 
4c7f237
06529d6
 
 
 
 
 
61f9d02
06529d6
 
 
 
 
 
 
 
7a7f4ae
06529d6
 
4c7f237
06529d6
4c7f237
06529d6
 
4c7f237
 
 
 
06529d6
 
 
61f9d02
 
 
 
06529d6
61f9d02
06529d6
 
 
f3ce108
06529d6
 
 
b551150
f3ce108
06529d6
 
 
 
7a7f4ae
 
 
06529d6
 
7a7f4ae
 
 
 
 
 
c580bba
7a7f4ae
 
06529d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61f9d02
 
06529d6
 
7a7f4ae
 
06529d6
 
 
 
 
61f9d02
 
06529d6
 
 
 
 
 
 
 
 
 
 
 
61f9d02
 
7a7f4ae
06529d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61f9d02
06529d6
 
 
 
 
4c7f237
06529d6
 
 
 
 
 
 
 
 
 
 
 
 
 
61f9d02
06529d6
 
 
 
 
b551150
f3ce108
06529d6
 
 
 
 
61f9d02
06529d6
 
 
 
 
 
4c7f237
06529d6
 
 
61f9d02
06529d6
 
 
 
 
 
 
 
 
4c7f237
06529d6
 
 
 
0585bb7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
---
language: en
license: mit
tags:
- image-classification
- imagenet
- multi-scale
- feature-geometry
- david
datasets:
- imagenet-1k
metrics:
- accuracy
model-index:
- name: David-decoupled-deep_efficiency
  results:
  - task:
      type: image-classification
    dataset:
      name: ImageNet-1K
      type: imagenet-1k
    metrics:
    - type: accuracy
      value: 62.94
---

# David: Multi-Scale Feature Classifier

**David** is a multi-scale deep learning classifier that uses feature geometry (pentachora/4-simplexes) 
as class prototypes with role-weighted similarity computation (Rose Loss).

This version is using multiple variations of clip-vit inputs simultaneously into shared space.
The experiment will determine if entirely deviant variations such as clip-vit-b-patch32 and patch16 can
exist simultaneously in the same shared space with the correct checks and spacings applied.

## Model Details

### Architecture
- **Preset**: gated_expert_team
- **Sharing Mode**: decoupled
- **Fusion Mode**: deep_efficiency
- **Scales**: [128, 256, 384, 448, 512, 576, 640, 768, 896]
- **Feature Dim**: 512
- **Parameters**: 22,133,801

### Training Configuration
- **Dataset**: AbstractPhil/imagenet-clip-features-orderly
- **Model Variant**: ['clip_vit_b16', 'clip_vit_laion_b32', 'clip_vit_b32']
- **Epochs**: 10
- **Batch Size**: 1024
- **Learning Rate**: 0.01
- **Rose Loss Weight**: 0.1 β†’ 0.8
- **Cayley Loss**: False

## Performance

### Best Results
- **Validation Accuracy**: 62.94%
- **Best Epoch**: 9
- **Final Train Accuracy**: 61.07%

### Per-Scale Performance
- **Scale 128**: 62.94%
- **Scale 256**: 71.08%
- **Scale 384**: 73.44%
- **Scale 448**: 74.29%
- **Scale 512**: 74.61%
- **Scale 576**: 75.04%
- **Scale 640**: 75.18%
- **Scale 768**: 75.58%
- **Scale 896**: 75.90%


## Usage

### Quick Model Lookup

**Check `MODELS_INDEX.json` in the repo root** - it lists all trained models sorted by accuracy with links to weights and configs.

### Repository Structure

```
AbstractPhil/david-shared-space/
β”œβ”€β”€ MODELS_INDEX.json                # πŸ“Š Master index of all models (sorted by accuracy)
β”œβ”€β”€ README.md                         # This file
β”œβ”€β”€ best_model.json                   # Latest best model info
β”œβ”€β”€ weights/
β”‚   └── david_gated_expert_team/
β”‚       └── 20251013_004438/
β”‚           β”œβ”€β”€ MODEL_SUMMARY.txt     # 🎯 Human-readable performance summary
β”‚           β”œβ”€β”€ training_history.json # πŸ“ˆ Epoch-by-epoch training curve
β”‚           β”œβ”€β”€ best_model_acc62.94.safetensors  # ⭐ Accuracy in filename!
β”‚           β”œβ”€β”€ best_model_acc62.94_metadata.json
β”‚           β”œβ”€β”€ final_model.safetensors
β”‚           β”œβ”€β”€ checkpoint_epoch_X_accYY.YY.safetensors
β”‚           β”œβ”€β”€ david_config.json
β”‚           └── train_config.json
└── runs/
    └── david_gated_expert_team/
        └── 20251013_004438/
            └── events.out.tfevents.* # TensorBoard logs
```

### Loading the Model

```python
from geovocab2.train.model.core.david import David, DavidArchitectureConfig
from huggingface_hub import hf_hub_download

# Browse available models in MODELS_INDEX.json first!

# Specify model variant and run
model_name = "david_gated_expert_team"
run_id = "20251013_004438"
accuracy = "62.94"  # From MODELS_INDEX.json

# Download config
config_path = hf_hub_download(
    repo_id="AbstractPhil/david-shared-space", 
    filename=f"weights/{model_name}/{run_id}/david_config.json"
)
config = DavidArchitectureConfig.from_json(config_path)

# Download weights (accuracy in filename!)
weights_path = hf_hub_download(
    repo_id="AbstractPhil/david-shared-space", 
    filename=f"weights/{model_name}/{run_id}/best_model_acc{accuracy}.safetensors"
)

# Download training history (optional - see full training curve)
history_path = hf_hub_download(
    repo_id="AbstractPhil/david-shared-space", 
    filename=f"weights/{model_name}/{run_id}/training_history.json"
)

# Load model
from safetensors.torch import load_file
david = David.from_config(config)
david.load_state_dict(load_file(weights_path))
david.eval()
```

### Inference

```python
import torch
import torch.nn.functional as F

# Assuming you have CLIP features (512-dim for ViT-B/16)
features = get_clip_features(image)  # [1, 512]

# Load anchors
anchors_dict = torch.load("anchors.pth")

# Forward pass
with torch.no_grad():
    logits, _ = david(features, anchors_dict)
    predictions = logits.argmax(dim=-1)
```

## Architecture Overview

### Multi-Scale Processing
David processes inputs at multiple scales (128, 256, 384, 448, 512, 576, 640, 768, 896), 
allowing it to capture both coarse and fine-grained features.

### Shared Representation Space
This variation shares multiple versions of clip-vit models in the same representation space.

### Feature Geometry
Each class is represented by a pentachoron (4-simplex) in embedding space with 5 vertices:
- **Anchor**: Primary class representative
- **Need**: Complementary direction
- **Relation**: Contextual alignment
- **Purpose**: Functional direction
- **Observer**: Meta-perspective

### Rose Loss
Similarity computation uses role-weighted cosine similarities:
```
score = w_anchor * sim(z, anchor) + w_need * sim(z, need) + ...
```

### Fusion Strategy
**deep_efficiency**: Intelligently combines predictions from multiple scales.

## Training Details

### Loss Components
- **Cross-Entropy**: Standard classification loss
- **Rose Loss**: Pentachora role-weighted margin loss (weight: 0.1β†’0.8)
- **Cayley Loss**: Geometric regularization (disabled)

### Optimization
- **Optimizer**: AdamW
- **Weight Decay**: 1e-05
- **Scheduler**: cosine_restarts
- **Gradient Clip**: 10.0
- **Mixed Precision**: False

## Citation

```bibtex
@software{david_classifier_2025,
  title = {David: Multi-Scale Feature Classifier},
  author = {AbstractPhil},
  year = {2025},
  url = {https://huggingface.co/AbstractPhil/david-shared-space},
  note = {Run ID: 20251013_004438}
}
```

## License

MIT License

## Acknowledgments

Built with feature lattice geometry and multi-scale deep learning.
Special thanks to Claude (Anthropic) for debugging assistance.

---

*Generated on 2025-10-13 01:33:26*