Full fine-tuning on JDocQA - 2 epochs
Browse files- README.md +201 -0
- config.json +99 -0
- generation_config.json +7 -0
- model.safetensors +3 -0
- modeling_lfm2_vl.py +688 -0
README.md
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
tags:
|
| 4 |
+
- trl
|
| 5 |
+
- sft
|
| 6 |
+
---
|
| 7 |
+
|
| 8 |
+
# Model Card for Model ID
|
| 9 |
+
|
| 10 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
## Model Details
|
| 15 |
+
|
| 16 |
+
### Model Description
|
| 17 |
+
|
| 18 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 19 |
+
|
| 20 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 21 |
+
|
| 22 |
+
- **Developed by:** [More Information Needed]
|
| 23 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 24 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 25 |
+
- **Model type:** [More Information Needed]
|
| 26 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 27 |
+
- **License:** [More Information Needed]
|
| 28 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 29 |
+
|
| 30 |
+
### Model Sources [optional]
|
| 31 |
+
|
| 32 |
+
<!-- Provide the basic links for the model. -->
|
| 33 |
+
|
| 34 |
+
- **Repository:** [More Information Needed]
|
| 35 |
+
- **Paper [optional]:** [More Information Needed]
|
| 36 |
+
- **Demo [optional]:** [More Information Needed]
|
| 37 |
+
|
| 38 |
+
## Uses
|
| 39 |
+
|
| 40 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 41 |
+
|
| 42 |
+
### Direct Use
|
| 43 |
+
|
| 44 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 45 |
+
|
| 46 |
+
[More Information Needed]
|
| 47 |
+
|
| 48 |
+
### Downstream Use [optional]
|
| 49 |
+
|
| 50 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 51 |
+
|
| 52 |
+
[More Information Needed]
|
| 53 |
+
|
| 54 |
+
### Out-of-Scope Use
|
| 55 |
+
|
| 56 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 57 |
+
|
| 58 |
+
[More Information Needed]
|
| 59 |
+
|
| 60 |
+
## Bias, Risks, and Limitations
|
| 61 |
+
|
| 62 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 63 |
+
|
| 64 |
+
[More Information Needed]
|
| 65 |
+
|
| 66 |
+
### Recommendations
|
| 67 |
+
|
| 68 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 69 |
+
|
| 70 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 71 |
+
|
| 72 |
+
## How to Get Started with the Model
|
| 73 |
+
|
| 74 |
+
Use the code below to get started with the model.
|
| 75 |
+
|
| 76 |
+
[More Information Needed]
|
| 77 |
+
|
| 78 |
+
## Training Details
|
| 79 |
+
|
| 80 |
+
### Training Data
|
| 81 |
+
|
| 82 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 83 |
+
|
| 84 |
+
[More Information Needed]
|
| 85 |
+
|
| 86 |
+
### Training Procedure
|
| 87 |
+
|
| 88 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 89 |
+
|
| 90 |
+
#### Preprocessing [optional]
|
| 91 |
+
|
| 92 |
+
[More Information Needed]
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
#### Training Hyperparameters
|
| 96 |
+
|
| 97 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 98 |
+
|
| 99 |
+
#### Speeds, Sizes, Times [optional]
|
| 100 |
+
|
| 101 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 102 |
+
|
| 103 |
+
[More Information Needed]
|
| 104 |
+
|
| 105 |
+
## Evaluation
|
| 106 |
+
|
| 107 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 108 |
+
|
| 109 |
+
### Testing Data, Factors & Metrics
|
| 110 |
+
|
| 111 |
+
#### Testing Data
|
| 112 |
+
|
| 113 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 114 |
+
|
| 115 |
+
[More Information Needed]
|
| 116 |
+
|
| 117 |
+
#### Factors
|
| 118 |
+
|
| 119 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 120 |
+
|
| 121 |
+
[More Information Needed]
|
| 122 |
+
|
| 123 |
+
#### Metrics
|
| 124 |
+
|
| 125 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 126 |
+
|
| 127 |
+
[More Information Needed]
|
| 128 |
+
|
| 129 |
+
### Results
|
| 130 |
+
|
| 131 |
+
[More Information Needed]
|
| 132 |
+
|
| 133 |
+
#### Summary
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
## Model Examination [optional]
|
| 138 |
+
|
| 139 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 140 |
+
|
| 141 |
+
[More Information Needed]
|
| 142 |
+
|
| 143 |
+
## Environmental Impact
|
| 144 |
+
|
| 145 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 146 |
+
|
| 147 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 148 |
+
|
| 149 |
+
- **Hardware Type:** [More Information Needed]
|
| 150 |
+
- **Hours used:** [More Information Needed]
|
| 151 |
+
- **Cloud Provider:** [More Information Needed]
|
| 152 |
+
- **Compute Region:** [More Information Needed]
|
| 153 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 154 |
+
|
| 155 |
+
## Technical Specifications [optional]
|
| 156 |
+
|
| 157 |
+
### Model Architecture and Objective
|
| 158 |
+
|
| 159 |
+
[More Information Needed]
|
| 160 |
+
|
| 161 |
+
### Compute Infrastructure
|
| 162 |
+
|
| 163 |
+
[More Information Needed]
|
| 164 |
+
|
| 165 |
+
#### Hardware
|
| 166 |
+
|
| 167 |
+
[More Information Needed]
|
| 168 |
+
|
| 169 |
+
#### Software
|
| 170 |
+
|
| 171 |
+
[More Information Needed]
|
| 172 |
+
|
| 173 |
+
## Citation [optional]
|
| 174 |
+
|
| 175 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 176 |
+
|
| 177 |
+
**BibTeX:**
|
| 178 |
+
|
| 179 |
+
[More Information Needed]
|
| 180 |
+
|
| 181 |
+
**APA:**
|
| 182 |
+
|
| 183 |
+
[More Information Needed]
|
| 184 |
+
|
| 185 |
+
## Glossary [optional]
|
| 186 |
+
|
| 187 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 188 |
+
|
| 189 |
+
[More Information Needed]
|
| 190 |
+
|
| 191 |
+
## More Information [optional]
|
| 192 |
+
|
| 193 |
+
[More Information Needed]
|
| 194 |
+
|
| 195 |
+
## Model Card Authors [optional]
|
| 196 |
+
|
| 197 |
+
[More Information Needed]
|
| 198 |
+
|
| 199 |
+
## Model Card Contact
|
| 200 |
+
|
| 201 |
+
[More Information Needed]
|
config.json
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Lfm2VlForConditionalGeneration"
|
| 4 |
+
],
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoConfig": "modeling_lfm2_vl.Lfm2VlConfig",
|
| 7 |
+
"AutoModelForImageTextToText": "modeling_lfm2_vl.Lfm2VlForConditionalGeneration"
|
| 8 |
+
},
|
| 9 |
+
"do_image_splitting": true,
|
| 10 |
+
"downsample_factor": 2,
|
| 11 |
+
"encoder_patch_size": 16,
|
| 12 |
+
"image_token_index": 396,
|
| 13 |
+
"max_image_tokens": 256,
|
| 14 |
+
"max_num_patches": 1024,
|
| 15 |
+
"max_pixels_tolerance": 2.0,
|
| 16 |
+
"max_tiles": 10,
|
| 17 |
+
"min_image_tokens": 64,
|
| 18 |
+
"min_tiles": 2,
|
| 19 |
+
"model_type": "lfm2-vl",
|
| 20 |
+
"projector_bias": true,
|
| 21 |
+
"projector_hidden_act": "gelu",
|
| 22 |
+
"projector_hidden_size": 2560,
|
| 23 |
+
"text_config": {
|
| 24 |
+
"_name_or_path": "LiquidAI/LFM2-350M",
|
| 25 |
+
"architectures": [
|
| 26 |
+
"Lfm2ForCausalLM"
|
| 27 |
+
],
|
| 28 |
+
"block_auto_adjust_ff_dim": true,
|
| 29 |
+
"block_dim": 1024,
|
| 30 |
+
"block_ff_dim": 6656,
|
| 31 |
+
"block_ffn_dim_multiplier": 1.0,
|
| 32 |
+
"block_mlp_init_scale": 1.0,
|
| 33 |
+
"block_multiple_of": 256,
|
| 34 |
+
"block_norm_eps": 1e-05,
|
| 35 |
+
"block_out_init_scale": 1.0,
|
| 36 |
+
"block_use_swiglu": true,
|
| 37 |
+
"block_use_xavier_init": true,
|
| 38 |
+
"conv_L_cache": 3,
|
| 39 |
+
"conv_bias": false,
|
| 40 |
+
"conv_dim": 1024,
|
| 41 |
+
"conv_dim_out": 1024,
|
| 42 |
+
"conv_use_xavier_init": true,
|
| 43 |
+
"eos_token_id": 7,
|
| 44 |
+
"hidden_size": 1024,
|
| 45 |
+
"initializer_range": 0.02,
|
| 46 |
+
"intermediate_size": 6656,
|
| 47 |
+
"layer_types": [
|
| 48 |
+
"conv",
|
| 49 |
+
"conv",
|
| 50 |
+
"full_attention",
|
| 51 |
+
"conv",
|
| 52 |
+
"conv",
|
| 53 |
+
"full_attention",
|
| 54 |
+
"conv",
|
| 55 |
+
"conv",
|
| 56 |
+
"full_attention",
|
| 57 |
+
"conv",
|
| 58 |
+
"full_attention",
|
| 59 |
+
"conv",
|
| 60 |
+
"full_attention",
|
| 61 |
+
"conv",
|
| 62 |
+
"full_attention",
|
| 63 |
+
"conv"
|
| 64 |
+
],
|
| 65 |
+
"max_position_embeddings": 128000,
|
| 66 |
+
"model_type": "lfm2",
|
| 67 |
+
"norm_eps": 1e-05,
|
| 68 |
+
"num_attention_heads": 16,
|
| 69 |
+
"num_heads": 16,
|
| 70 |
+
"num_hidden_layers": 16,
|
| 71 |
+
"num_key_value_heads": 8,
|
| 72 |
+
"rope_theta": 1000000.0,
|
| 73 |
+
"torch_dtype": "bfloat16",
|
| 74 |
+
"use_cache": true,
|
| 75 |
+
"use_pos_enc": true,
|
| 76 |
+
"vocab_size": 65536
|
| 77 |
+
},
|
| 78 |
+
"tile_size": 512,
|
| 79 |
+
"torch_dtype": "bfloat16",
|
| 80 |
+
"transformers_version": "4.55.0",
|
| 81 |
+
"use_image_special_tokens": true,
|
| 82 |
+
"use_thumbnail": false,
|
| 83 |
+
"vision_config": {
|
| 84 |
+
"attention_dropout": 0.0,
|
| 85 |
+
"hidden_act": "gelu_pytorch_tanh",
|
| 86 |
+
"hidden_size": 768,
|
| 87 |
+
"intermediate_size": 3072,
|
| 88 |
+
"layer_norm_eps": 1e-06,
|
| 89 |
+
"model_type": "siglip2_vision_model",
|
| 90 |
+
"num_attention_heads": 12,
|
| 91 |
+
"num_channels": 3,
|
| 92 |
+
"num_hidden_layers": 12,
|
| 93 |
+
"num_patches": 256,
|
| 94 |
+
"patch_size": 16,
|
| 95 |
+
"torch_dtype": "bfloat16",
|
| 96 |
+
"vision_use_head": false
|
| 97 |
+
},
|
| 98 |
+
"vision_feature_layer": -1
|
| 99 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 7,
|
| 5 |
+
"pad_token_id": 0,
|
| 6 |
+
"transformers_version": "4.55.0"
|
| 7 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5e3d19ea94dd54b9b260919839df87a7f6324fd729323c62590f5c8e146bfe29
|
| 3 |
+
size 901692416
|
modeling_lfm2_vl.py
ADDED
|
@@ -0,0 +1,688 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""PyTorch LFM2-VL model."""
|
| 2 |
+
|
| 3 |
+
from dataclasses import dataclass
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
from torch import nn
|
| 7 |
+
from transformers import AutoConfig, AutoModel
|
| 8 |
+
from transformers.activations import ACT2FN
|
| 9 |
+
from transformers.cache_utils import Cache
|
| 10 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 11 |
+
from transformers.generation import GenerationMixin
|
| 12 |
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
| 13 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput
|
| 14 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 15 |
+
from transformers.models.lfm2.configuration_lfm2 import Lfm2Config
|
| 16 |
+
from transformers.models.siglip2.configuration_siglip2 import Siglip2VisionConfig
|
| 17 |
+
from transformers.models.siglip2.modeling_siglip2 import Siglip2VisionModel
|
| 18 |
+
from transformers.processing_utils import Unpack
|
| 19 |
+
from transformers.utils import can_return_tuple, logging
|
| 20 |
+
|
| 21 |
+
logger = logging.get_logger(__name__)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class Lfm2VlConfig(PretrainedConfig):
|
| 25 |
+
r"""
|
| 26 |
+
This is the configuration class to store the configuration of a [`Lfm2VlForConditionalGeneration`]. It is used to instantiate an
|
| 27 |
+
Lfm2Vl model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
| 28 |
+
with the defaults will yield a similar configuration to that of the Lfm2-VL-1.6B.
|
| 29 |
+
|
| 30 |
+
e.g. [LiquidAI/LFM2-VL-1.6B](https://huggingface.co/LiquidAI/LFM2-VL-1.6B)
|
| 31 |
+
|
| 32 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 33 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 34 |
+
|
| 35 |
+
Args:
|
| 36 |
+
vision_config (`AutoConfig | dict`, *optional*, defaults to `Siglip2ImageConfig`):
|
| 37 |
+
The config object or dictionary of the vision backbone.
|
| 38 |
+
text_config (`AutoConfig | dict`, *optional*, defaults to `Lfm2Config`):
|
| 39 |
+
The config object or dictionary of the text backbone.
|
| 40 |
+
image_token_id (`int`, *optional*, defaults to 396):
|
| 41 |
+
The image token index to encode the image prompt.
|
| 42 |
+
projector_hidden_act (`str`, *optional*, defaults to `"gelu"`):
|
| 43 |
+
The activation function used by the multimodal projector.
|
| 44 |
+
projector_hidden_size (`int`, *optional*, defaults to 2056):
|
| 45 |
+
The hidden size of the multimodal projector.
|
| 46 |
+
projector_bias (`bool`, *optional*, defaults to `True`):
|
| 47 |
+
Whether to use bias in the multimodal projector.
|
| 48 |
+
downsample_factor (`int`, *optional*, defaults to 2):
|
| 49 |
+
The downsample_factor factor of the vision backbone.
|
| 50 |
+
vision_feature_layer (`int`, *optional*, defaults to -1):
|
| 51 |
+
The layer of the vision tower to use as features.
|
| 52 |
+
min_image_tokens (`int`, *optional*, defaults to 64):
|
| 53 |
+
The minimum number of image tokens for smart resize.
|
| 54 |
+
max_image_tokens (`int`, *optional*, defaults to 256):
|
| 55 |
+
The maximum number of image tokens for smart resize.
|
| 56 |
+
encoder_patch_size (`int`, *optional*, defaults to 16):
|
| 57 |
+
The patch size of the encoder.
|
| 58 |
+
max_num_patches (`int`, *optional*, defaults to 1024):
|
| 59 |
+
The maximum number of image tokens passed to the encoder per image or tile.
|
| 60 |
+
use_image_special_tokens (`bool`, *optional*, defaults to `True`):
|
| 61 |
+
Whether to use image special tokens.
|
| 62 |
+
do_image_splitting (`bool`, *optional*, defaults to `True`):
|
| 63 |
+
Whether to split large images into tiles.
|
| 64 |
+
min_tiles (`int`, *optional*, defaults to 2):
|
| 65 |
+
The minimum number of tiles to split the image into.
|
| 66 |
+
max_tiles (`int`, *optional*, defaults to 10):
|
| 67 |
+
The maximum number of tiles to split the image into.
|
| 68 |
+
tile_size (`int`, *optional*, defaults to 512):
|
| 69 |
+
The size of the tile to split the image into.
|
| 70 |
+
max_pixels_tolerance (`float`, *optional*, defaults to 2.0):
|
| 71 |
+
The maximum tolerance for the number of pixels in the image before splitting.
|
| 72 |
+
use_thumbnail (`bool`, *optional*, defaults to `True`):
|
| 73 |
+
Whether to append the thumbnail of the image when splitting.
|
| 74 |
+
"""
|
| 75 |
+
|
| 76 |
+
model_type = "lfm2-vl"
|
| 77 |
+
attribute_map = {
|
| 78 |
+
"image_token_id": "image_token_index",
|
| 79 |
+
}
|
| 80 |
+
sub_configs = {"text_config": AutoConfig, "vision_config": AutoConfig}
|
| 81 |
+
|
| 82 |
+
def __init__(
|
| 83 |
+
self,
|
| 84 |
+
vision_config=None,
|
| 85 |
+
text_config=None,
|
| 86 |
+
image_token_index=396,
|
| 87 |
+
projector_hidden_act="gelu",
|
| 88 |
+
projector_hidden_size=2560,
|
| 89 |
+
projector_bias=True,
|
| 90 |
+
downsample_factor=2,
|
| 91 |
+
vision_feature_layer=-1,
|
| 92 |
+
min_image_tokens=64,
|
| 93 |
+
max_image_tokens=256,
|
| 94 |
+
encoder_patch_size=16,
|
| 95 |
+
max_num_patches=1024,
|
| 96 |
+
use_image_special_tokens=True,
|
| 97 |
+
do_image_splitting=True,
|
| 98 |
+
min_tiles=2,
|
| 99 |
+
max_tiles=10,
|
| 100 |
+
tile_size=512,
|
| 101 |
+
max_pixels_tolerance=2.0,
|
| 102 |
+
use_thumbnail=True,
|
| 103 |
+
torch_dtype=torch.bfloat16,
|
| 104 |
+
**kwargs,
|
| 105 |
+
):
|
| 106 |
+
self.vision_config = vision_config
|
| 107 |
+
self.text_config = text_config
|
| 108 |
+
self.image_token_index = image_token_index
|
| 109 |
+
self.projector_hidden_act = projector_hidden_act
|
| 110 |
+
self.projector_hidden_size = projector_hidden_size
|
| 111 |
+
self.projector_bias = projector_bias
|
| 112 |
+
self.downsample_factor = downsample_factor
|
| 113 |
+
self.vision_feature_layer = vision_feature_layer
|
| 114 |
+
self.min_image_tokens = min_image_tokens
|
| 115 |
+
self.max_image_tokens = max_image_tokens
|
| 116 |
+
self.encoder_patch_size = encoder_patch_size
|
| 117 |
+
self.max_num_patches = max_num_patches
|
| 118 |
+
self.use_image_special_tokens = use_image_special_tokens
|
| 119 |
+
self.do_image_splitting = do_image_splitting
|
| 120 |
+
self.min_tiles = min_tiles
|
| 121 |
+
self.max_tiles = max_tiles
|
| 122 |
+
self.tile_size = tile_size
|
| 123 |
+
self.max_pixels_tolerance = max_pixels_tolerance
|
| 124 |
+
self.use_thumbnail = use_thumbnail
|
| 125 |
+
self.torch_dtype = torch_dtype
|
| 126 |
+
|
| 127 |
+
if isinstance(vision_config, dict):
|
| 128 |
+
vision_config = Siglip2VisionConfig(**vision_config)
|
| 129 |
+
elif vision_config is None:
|
| 130 |
+
vision_config = Siglip2VisionConfig()
|
| 131 |
+
self.vision_config = vision_config
|
| 132 |
+
|
| 133 |
+
self.vision_config = vision_config
|
| 134 |
+
|
| 135 |
+
if isinstance(text_config, dict):
|
| 136 |
+
text_config = Lfm2Config(**text_config)
|
| 137 |
+
elif text_config is None:
|
| 138 |
+
text_config = Lfm2Config()
|
| 139 |
+
|
| 140 |
+
self.text_config = text_config
|
| 141 |
+
|
| 142 |
+
super().__init__(**kwargs)
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
@dataclass
|
| 146 |
+
class Lfm2VlModelOutputWithPast(BaseModelOutputWithPast):
|
| 147 |
+
r"""
|
| 148 |
+
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 149 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
| 150 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
| 151 |
+
|
| 152 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
| 153 |
+
`past_key_values` input) to speed up sequential decoding.
|
| 154 |
+
image_hidden_states (`torch.FloatTensor`, *optional*):
|
| 155 |
+
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
|
| 156 |
+
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
|
| 157 |
+
"""
|
| 158 |
+
|
| 159 |
+
image_hidden_states: torch.FloatTensor | None = None
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
@dataclass
|
| 163 |
+
class Lfm2VlCausalLMOutputWithPast(ModelOutput):
|
| 164 |
+
r"""
|
| 165 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
| 166 |
+
Language modeling loss (for next-token prediction).
|
| 167 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
| 168 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
| 169 |
+
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 170 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
| 171 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
| 172 |
+
|
| 173 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
| 174 |
+
`past_key_values` input) to speed up sequential decoding.
|
| 175 |
+
image_hidden_states (`torch.FloatTensor`, *optional*):
|
| 176 |
+
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
|
| 177 |
+
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
|
| 178 |
+
"""
|
| 179 |
+
|
| 180 |
+
loss: torch.FloatTensor | None = None
|
| 181 |
+
logits: torch.FloatTensor | None = None
|
| 182 |
+
past_key_values: list[torch.FloatTensor] | None = None
|
| 183 |
+
hidden_states: tuple[torch.FloatTensor] | None = None
|
| 184 |
+
attentions: tuple[torch.FloatTensor] | None = None
|
| 185 |
+
image_hidden_states: torch.FloatTensor | None = None
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
class Lfm2VlMultiModalProjector(nn.Module):
|
| 189 |
+
def __init__(self, config: Lfm2VlConfig):
|
| 190 |
+
super().__init__()
|
| 191 |
+
in_channels = config.vision_config.hidden_size * (config.downsample_factor**2)
|
| 192 |
+
self.layer_norm = nn.LayerNorm(in_channels)
|
| 193 |
+
self.linear_1 = nn.Linear(
|
| 194 |
+
in_channels,
|
| 195 |
+
config.projector_hidden_size,
|
| 196 |
+
bias=config.projector_bias,
|
| 197 |
+
)
|
| 198 |
+
self.act = ACT2FN[config.projector_hidden_act]
|
| 199 |
+
self.linear_2 = nn.Linear(
|
| 200 |
+
config.projector_hidden_size,
|
| 201 |
+
config.text_config.hidden_size,
|
| 202 |
+
bias=config.projector_bias,
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
def forward(self, image_features):
|
| 206 |
+
image_features = self.layer_norm(image_features)
|
| 207 |
+
hidden_states = self.linear_1(image_features)
|
| 208 |
+
hidden_states = self.act(hidden_states)
|
| 209 |
+
hidden_states = self.linear_2(hidden_states)
|
| 210 |
+
return hidden_states
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
class PixelUnshuffleBlock(nn.Module):
|
| 214 |
+
def __init__(self, factor: int):
|
| 215 |
+
super().__init__()
|
| 216 |
+
self.factor = factor
|
| 217 |
+
|
| 218 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 219 |
+
n, w, h, c = x.size()
|
| 220 |
+
if w % self.factor != 0:
|
| 221 |
+
x = torch.concat(
|
| 222 |
+
[
|
| 223 |
+
x,
|
| 224 |
+
torch.zeros(
|
| 225 |
+
(n, self.factor - (w % self.factor), h, c), dtype=x.dtype
|
| 226 |
+
).to(x.device),
|
| 227 |
+
],
|
| 228 |
+
dim=1,
|
| 229 |
+
).contiguous()
|
| 230 |
+
n, w, h, c = x.size()
|
| 231 |
+
x = x.contiguous()
|
| 232 |
+
if h % self.factor != 0:
|
| 233 |
+
x = torch.concat(
|
| 234 |
+
[
|
| 235 |
+
x,
|
| 236 |
+
torch.zeros(
|
| 237 |
+
(n, w, self.factor - (h % self.factor), c), dtype=x.dtype
|
| 238 |
+
).to(x.device),
|
| 239 |
+
],
|
| 240 |
+
dim=2,
|
| 241 |
+
).contiguous()
|
| 242 |
+
n, w, h, c = x.size()
|
| 243 |
+
x = x.view(n, w, int(h / self.factor), int(c * self.factor))
|
| 244 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
| 245 |
+
x = x.view(
|
| 246 |
+
n, int(h / self.factor), int(w / self.factor), int(c * self.factor**2)
|
| 247 |
+
)
|
| 248 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
| 249 |
+
return x
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
class Lfm2VlPreTrainedModel(PreTrainedModel):
|
| 253 |
+
config: Lfm2VlConfig
|
| 254 |
+
base_model_prefix = ""
|
| 255 |
+
supports_gradient_checkpointing = True
|
| 256 |
+
_skip_keys_device_placement = ["past_key_values"]
|
| 257 |
+
|
| 258 |
+
_supports_flash_attn = True
|
| 259 |
+
_supports_sdpa = True
|
| 260 |
+
|
| 261 |
+
_can_compile_fullgraph = False
|
| 262 |
+
_supports_flex_attn = True
|
| 263 |
+
_supports_attention_backend = True
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
class Lfm2VlModel(Lfm2VlPreTrainedModel):
|
| 267 |
+
_checkpoint_conversion_mapping = {"language_model.model": "language_model"}
|
| 268 |
+
|
| 269 |
+
def __init__(self, config: Lfm2VlConfig):
|
| 270 |
+
super().__init__(config)
|
| 271 |
+
self.vision_tower = Siglip2VisionModel(config.vision_config)
|
| 272 |
+
|
| 273 |
+
if config.vision_feature_layer != -1:
|
| 274 |
+
self.vision_tower.vision_model.encoder.layers = (
|
| 275 |
+
self.vision_tower.vision_model.encoder.layers[
|
| 276 |
+
: config.vision_feature_layer + 1
|
| 277 |
+
]
|
| 278 |
+
)
|
| 279 |
+
if config.downsample_factor > 1:
|
| 280 |
+
self.pixel_unshuffle = PixelUnshuffleBlock(config.downsample_factor)
|
| 281 |
+
else:
|
| 282 |
+
self.pixel_unshuffle = nn.Identity()
|
| 283 |
+
|
| 284 |
+
self.multi_modal_projector = Lfm2VlMultiModalProjector(config)
|
| 285 |
+
self.language_model = AutoModel.from_config(config.text_config)
|
| 286 |
+
self.post_init()
|
| 287 |
+
|
| 288 |
+
def get_input_embeddings(self):
|
| 289 |
+
return self.language_model.get_input_embeddings()
|
| 290 |
+
|
| 291 |
+
def set_input_embeddings(self, value):
|
| 292 |
+
self.language_model.set_input_embeddings(value)
|
| 293 |
+
|
| 294 |
+
def set_decoder(self, decoder):
|
| 295 |
+
self.language_model = decoder
|
| 296 |
+
|
| 297 |
+
def get_decoder(self):
|
| 298 |
+
return self.language_model
|
| 299 |
+
|
| 300 |
+
def get_image_features(
|
| 301 |
+
self,
|
| 302 |
+
pixel_values: torch.FloatTensor,
|
| 303 |
+
spatial_shapes: torch.Tensor,
|
| 304 |
+
pixel_attention_mask: torch.Tensor,
|
| 305 |
+
**kwargs,
|
| 306 |
+
) -> list[torch.Tensor]:
|
| 307 |
+
"""
|
| 308 |
+
Obtains image last hidden states from the vision tower and apply multimodal projection.
|
| 309 |
+
|
| 310 |
+
Args:
|
| 311 |
+
pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`):
|
| 312 |
+
The tensors corresponding to the input images.
|
| 313 |
+
spatial_shapes (`torch.Tensor` of shape `(batch_size, 2)`):
|
| 314 |
+
The spatial shapes of the input images.
|
| 315 |
+
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, height, width)`):
|
| 316 |
+
The pixel attention mask of the input images.
|
| 317 |
+
Returns:
|
| 318 |
+
image_features (`list[torch.Tensor]`): Image feature tensor of shape `(num_images, image_length, embed_dim)`).
|
| 319 |
+
"""
|
| 320 |
+
image_outputs = self.vision_tower(
|
| 321 |
+
pixel_values=pixel_values,
|
| 322 |
+
spatial_shapes=spatial_shapes,
|
| 323 |
+
pixel_attention_mask=pixel_attention_mask,
|
| 324 |
+
).last_hidden_state
|
| 325 |
+
|
| 326 |
+
img_feature_lengths = pixel_attention_mask.sum(dim=1)
|
| 327 |
+
image_features = []
|
| 328 |
+
|
| 329 |
+
for img_idx in range(image_outputs.size(0)):
|
| 330 |
+
feature = image_outputs[img_idx]
|
| 331 |
+
# unpad the image representation
|
| 332 |
+
feature = feature[: img_feature_lengths[img_idx], :].unsqueeze(0)
|
| 333 |
+
|
| 334 |
+
feature_org_h, feature_org_w = spatial_shapes[img_idx]
|
| 335 |
+
feature = feature.reshape(1, feature_org_h, feature_org_w, -1)
|
| 336 |
+
feature = self.pixel_unshuffle(feature)
|
| 337 |
+
|
| 338 |
+
# project the image representation
|
| 339 |
+
img_embedding = self.multi_modal_projector(feature)
|
| 340 |
+
|
| 341 |
+
# flatten here to handle variable length in naflex
|
| 342 |
+
img_embedding = img_embedding.reshape(-1, img_embedding.size(-1))
|
| 343 |
+
image_features.append(img_embedding)
|
| 344 |
+
|
| 345 |
+
return image_features
|
| 346 |
+
|
| 347 |
+
def get_placeholder_mask(
|
| 348 |
+
self,
|
| 349 |
+
input_ids: torch.LongTensor | None,
|
| 350 |
+
inputs_embeds: torch.FloatTensor,
|
| 351 |
+
image_features: torch.FloatTensor,
|
| 352 |
+
):
|
| 353 |
+
"""
|
| 354 |
+
Obtains multimodal placeholdr mask from `input_ids` or `inputs_embeds`, and checks that the placeholder token count is
|
| 355 |
+
equal to the length of multimodal features. If the lengths are different, an error is raised.
|
| 356 |
+
"""
|
| 357 |
+
if input_ids is None:
|
| 358 |
+
special_image_mask = inputs_embeds == self.get_input_embeddings()(
|
| 359 |
+
torch.tensor(
|
| 360 |
+
self.config.image_token_id,
|
| 361 |
+
dtype=torch.long,
|
| 362 |
+
device=inputs_embeds.device,
|
| 363 |
+
)
|
| 364 |
+
)
|
| 365 |
+
special_image_mask = special_image_mask.all(-1)
|
| 366 |
+
else:
|
| 367 |
+
special_image_mask = input_ids == self.config.image_token_id
|
| 368 |
+
n_image_tokens = special_image_mask.sum()
|
| 369 |
+
special_image_mask = (
|
| 370 |
+
special_image_mask.unsqueeze(-1)
|
| 371 |
+
.expand_as(inputs_embeds)
|
| 372 |
+
.to(inputs_embeds.device)
|
| 373 |
+
)
|
| 374 |
+
n_image_features = image_features.shape[0]
|
| 375 |
+
if inputs_embeds[special_image_mask].numel() != image_features.numel():
|
| 376 |
+
raise ValueError(
|
| 377 |
+
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
|
| 378 |
+
)
|
| 379 |
+
return special_image_mask
|
| 380 |
+
|
| 381 |
+
@can_return_tuple
|
| 382 |
+
def forward(
|
| 383 |
+
self,
|
| 384 |
+
input_ids: torch.LongTensor = None,
|
| 385 |
+
attention_mask: torch.Tensor | None = None,
|
| 386 |
+
position_ids: torch.LongTensor | None = None,
|
| 387 |
+
pixel_values: torch.FloatTensor = None,
|
| 388 |
+
spatial_shapes: torch.Tensor = None,
|
| 389 |
+
pixel_attention_mask: torch.Tensor = None,
|
| 390 |
+
past_key_values: Cache | None = None,
|
| 391 |
+
inputs_embeds: torch.FloatTensor | None = None,
|
| 392 |
+
use_cache: bool | None = None,
|
| 393 |
+
output_attentions: bool | None = None,
|
| 394 |
+
output_hidden_states: bool | None = None,
|
| 395 |
+
return_dict: bool | None = None,
|
| 396 |
+
cache_position: torch.LongTensor | None = None,
|
| 397 |
+
image_sizes: torch.Tensor = None,
|
| 398 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
| 399 |
+
) -> tuple | Lfm2VlModelOutputWithPast:
|
| 400 |
+
"""
|
| 401 |
+
spatial_shapes (`torch.Tensor` of shape `(batch_size, 2)`, *optional*):
|
| 402 |
+
The spatial shapes of the input images.
|
| 403 |
+
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, height, width)`, *optional*):
|
| 404 |
+
The pixel attention mask of the input images.
|
| 405 |
+
"""
|
| 406 |
+
output_attentions = (
|
| 407 |
+
output_attentions
|
| 408 |
+
if output_attentions is not None
|
| 409 |
+
else self.config.output_attentions
|
| 410 |
+
)
|
| 411 |
+
output_hidden_states = (
|
| 412 |
+
output_hidden_states
|
| 413 |
+
if output_hidden_states is not None
|
| 414 |
+
else self.config.output_hidden_states
|
| 415 |
+
)
|
| 416 |
+
return_dict = (
|
| 417 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 418 |
+
)
|
| 419 |
+
|
| 420 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 421 |
+
raise ValueError(
|
| 422 |
+
"You must specify exactly one of input_ids or inputs_embeds"
|
| 423 |
+
)
|
| 424 |
+
|
| 425 |
+
if inputs_embeds is None:
|
| 426 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
| 427 |
+
|
| 428 |
+
if pixel_values is not None:
|
| 429 |
+
image_features = self.get_image_features(
|
| 430 |
+
pixel_values=pixel_values,
|
| 431 |
+
spatial_shapes=spatial_shapes,
|
| 432 |
+
pixel_attention_mask=pixel_attention_mask,
|
| 433 |
+
)
|
| 434 |
+
image_features = torch.cat(image_features, dim=0).to(
|
| 435 |
+
inputs_embeds.device, inputs_embeds.dtype
|
| 436 |
+
)
|
| 437 |
+
special_image_mask = self.get_placeholder_mask(
|
| 438 |
+
input_ids=input_ids,
|
| 439 |
+
inputs_embeds=inputs_embeds,
|
| 440 |
+
image_features=image_features,
|
| 441 |
+
)
|
| 442 |
+
inputs_embeds = inputs_embeds.masked_scatter(
|
| 443 |
+
special_image_mask, image_features
|
| 444 |
+
)
|
| 445 |
+
|
| 446 |
+
outputs = self.language_model(
|
| 447 |
+
attention_mask=attention_mask,
|
| 448 |
+
position_ids=position_ids,
|
| 449 |
+
past_key_values=past_key_values,
|
| 450 |
+
inputs_embeds=inputs_embeds,
|
| 451 |
+
use_cache=use_cache,
|
| 452 |
+
output_attentions=output_attentions,
|
| 453 |
+
output_hidden_states=output_hidden_states,
|
| 454 |
+
return_dict=True,
|
| 455 |
+
cache_position=cache_position,
|
| 456 |
+
**kwargs,
|
| 457 |
+
)
|
| 458 |
+
|
| 459 |
+
return Lfm2VlModelOutputWithPast(
|
| 460 |
+
last_hidden_state=outputs.last_hidden_state,
|
| 461 |
+
past_key_values=outputs.past_key_values,
|
| 462 |
+
hidden_states=outputs.hidden_states,
|
| 463 |
+
attentions=outputs.attentions,
|
| 464 |
+
image_hidden_states=image_features if pixel_values is not None else None,
|
| 465 |
+
)
|
| 466 |
+
|
| 467 |
+
|
| 468 |
+
class Lfm2VlForConditionalGeneration(Lfm2VlPreTrainedModel, GenerationMixin):
|
| 469 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 470 |
+
|
| 471 |
+
def __init__(self, config: Lfm2VlConfig):
|
| 472 |
+
super().__init__(config)
|
| 473 |
+
self.model = Lfm2VlModel(config)
|
| 474 |
+
self.lm_head = nn.Linear(
|
| 475 |
+
config.text_config.hidden_size, config.text_config.vocab_size, bias=False
|
| 476 |
+
)
|
| 477 |
+
self.post_init()
|
| 478 |
+
|
| 479 |
+
def _supports_default_dynamic_cache(self):
|
| 480 |
+
return False
|
| 481 |
+
|
| 482 |
+
def get_input_embeddings(self):
|
| 483 |
+
return self.model.get_input_embeddings()
|
| 484 |
+
|
| 485 |
+
def set_input_embeddings(self, value):
|
| 486 |
+
self.model.set_input_embeddings(value)
|
| 487 |
+
|
| 488 |
+
def get_output_embeddings(self) -> nn.Module:
|
| 489 |
+
return self.lm_head
|
| 490 |
+
|
| 491 |
+
def set_decoder(self, decoder):
|
| 492 |
+
self.model.set_decoder(decoder)
|
| 493 |
+
|
| 494 |
+
def get_decoder(self):
|
| 495 |
+
return self.model.get_decoder()
|
| 496 |
+
|
| 497 |
+
def get_image_features(
|
| 498 |
+
self,
|
| 499 |
+
pixel_values: torch.FloatTensor,
|
| 500 |
+
spatial_shapes: torch.Tensor,
|
| 501 |
+
pixel_attention_mask: torch.Tensor,
|
| 502 |
+
**kwargs,
|
| 503 |
+
):
|
| 504 |
+
return self.model.get_image_features(
|
| 505 |
+
pixel_values=pixel_values,
|
| 506 |
+
spatial_shapes=spatial_shapes,
|
| 507 |
+
pixel_attention_mask=pixel_attention_mask,
|
| 508 |
+
**kwargs,
|
| 509 |
+
)
|
| 510 |
+
|
| 511 |
+
@property
|
| 512 |
+
def language_model(self):
|
| 513 |
+
return self.model.language_model
|
| 514 |
+
|
| 515 |
+
@property
|
| 516 |
+
def vision_tower(self):
|
| 517 |
+
return self.model.vision_tower
|
| 518 |
+
|
| 519 |
+
@property
|
| 520 |
+
def multi_modal_projector(self):
|
| 521 |
+
return self.model.multi_modal_projector
|
| 522 |
+
|
| 523 |
+
@can_return_tuple
|
| 524 |
+
def forward(
|
| 525 |
+
self,
|
| 526 |
+
input_ids: torch.LongTensor = None,
|
| 527 |
+
pixel_values: torch.FloatTensor = None,
|
| 528 |
+
spatial_shapes: torch.Tensor = None,
|
| 529 |
+
pixel_attention_mask: torch.Tensor = None,
|
| 530 |
+
attention_mask: torch.Tensor | None = None,
|
| 531 |
+
position_ids: torch.LongTensor | None = None,
|
| 532 |
+
past_key_values: Cache | None = None,
|
| 533 |
+
inputs_embeds: torch.FloatTensor | None = None,
|
| 534 |
+
labels: torch.LongTensor | None = None,
|
| 535 |
+
use_cache: bool | None = None,
|
| 536 |
+
output_attentions: bool | None = None,
|
| 537 |
+
output_hidden_states: bool | None = None,
|
| 538 |
+
return_dict: bool | None = None,
|
| 539 |
+
cache_position: torch.LongTensor | None = None,
|
| 540 |
+
logits_to_keep: int | torch.Tensor = 0,
|
| 541 |
+
image_sizes: torch.Tensor | None = None,
|
| 542 |
+
**kwargs,
|
| 543 |
+
) -> tuple | Lfm2VlCausalLMOutputWithPast:
|
| 544 |
+
r"""
|
| 545 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, channels, height, width)`, *optional*):
|
| 546 |
+
The input image tensors.
|
| 547 |
+
spatial_shapes (`torch.Tensor` of shape `(batch_size, 2)`, *optional*):
|
| 548 |
+
The spatial shapes of the input images.
|
| 549 |
+
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, height, width)`, *optional*):
|
| 550 |
+
The pixel attention mask of the input images.
|
| 551 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 552 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 553 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 554 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 555 |
+
|
| 556 |
+
Example:
|
| 557 |
+
|
| 558 |
+
```python
|
| 559 |
+
>>> from PIL import Image
|
| 560 |
+
>>> import requests
|
| 561 |
+
>>> from transformers import AutoProcessor, AutoModelForImageTextToText
|
| 562 |
+
>>> from transformers.image_utils import load_image
|
| 563 |
+
|
| 564 |
+
>>> model = AutoModelForImageTextToText.from_pretrained(
|
| 565 |
+
... "LiquidAI/LFM2-VL-1.6B",
|
| 566 |
+
... trust_remote_code=True
|
| 567 |
+
... )
|
| 568 |
+
>>> processor = AutoProcessor.from_pretrained(
|
| 569 |
+
... "LiquidAI/LFM2-VL-1.6B",
|
| 570 |
+
... trust_remote_code=True
|
| 571 |
+
... )
|
| 572 |
+
|
| 573 |
+
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
| 574 |
+
>>> image = load_image(url)
|
| 575 |
+
|
| 576 |
+
>>> conversation = [
|
| 577 |
+
... {
|
| 578 |
+
... "role": "user",
|
| 579 |
+
... "content": [
|
| 580 |
+
... {"type": "image", "image": image},
|
| 581 |
+
... {"type": "text", "text": "What is in this image?"},
|
| 582 |
+
... ],
|
| 583 |
+
... },
|
| 584 |
+
... ]
|
| 585 |
+
|
| 586 |
+
>>> inputs = processor.apply_chat_template(
|
| 587 |
+
... conversation,
|
| 588 |
+
... add_generation_prompt=True,
|
| 589 |
+
... tokenize=True,
|
| 590 |
+
... return_dict=True,
|
| 591 |
+
... return_tensors="pt"
|
| 592 |
+
... )
|
| 593 |
+
|
| 594 |
+
>>> # Generate
|
| 595 |
+
>>> outputs = model.generate(**inputs, max_new_tokens=45)
|
| 596 |
+
>>> processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
| 597 |
+
'This image depicts a vibrant street scene in what appears to be a Chinatown or similar cultural area. The focal point is a large red stop sign with white lettering, mounted on a pole.'
|
| 598 |
+
```"""
|
| 599 |
+
output_attentions = (
|
| 600 |
+
output_attentions
|
| 601 |
+
if output_attentions is not None
|
| 602 |
+
else self.config.output_attentions
|
| 603 |
+
)
|
| 604 |
+
output_hidden_states = (
|
| 605 |
+
output_hidden_states
|
| 606 |
+
if output_hidden_states is not None
|
| 607 |
+
else self.config.output_hidden_states
|
| 608 |
+
)
|
| 609 |
+
return_dict = (
|
| 610 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 611 |
+
)
|
| 612 |
+
|
| 613 |
+
outputs = self.model(
|
| 614 |
+
input_ids=input_ids,
|
| 615 |
+
pixel_values=pixel_values,
|
| 616 |
+
spatial_shapes=spatial_shapes,
|
| 617 |
+
pixel_attention_mask=pixel_attention_mask,
|
| 618 |
+
attention_mask=attention_mask,
|
| 619 |
+
position_ids=position_ids,
|
| 620 |
+
past_key_values=past_key_values,
|
| 621 |
+
inputs_embeds=inputs_embeds,
|
| 622 |
+
use_cache=use_cache,
|
| 623 |
+
output_attentions=output_attentions,
|
| 624 |
+
output_hidden_states=output_hidden_states,
|
| 625 |
+
return_dict=True,
|
| 626 |
+
cache_position=cache_position,
|
| 627 |
+
image_sizes=image_sizes,
|
| 628 |
+
**kwargs,
|
| 629 |
+
)
|
| 630 |
+
|
| 631 |
+
hidden_states = outputs[0]
|
| 632 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
| 633 |
+
slice_indices = (
|
| 634 |
+
slice(-logits_to_keep, None)
|
| 635 |
+
if isinstance(logits_to_keep, int)
|
| 636 |
+
else logits_to_keep
|
| 637 |
+
)
|
| 638 |
+
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
| 639 |
+
|
| 640 |
+
loss = None
|
| 641 |
+
if labels is not None:
|
| 642 |
+
loss = self.loss_function(
|
| 643 |
+
logits=logits,
|
| 644 |
+
labels=labels,
|
| 645 |
+
vocab_size=self.config.text_config.vocab_size,
|
| 646 |
+
**kwargs,
|
| 647 |
+
)
|
| 648 |
+
|
| 649 |
+
return Lfm2VlCausalLMOutputWithPast(
|
| 650 |
+
loss=loss,
|
| 651 |
+
logits=logits,
|
| 652 |
+
past_key_values=outputs.past_key_values,
|
| 653 |
+
hidden_states=outputs.hidden_states,
|
| 654 |
+
attentions=outputs.attentions,
|
| 655 |
+
image_hidden_states=outputs.image_hidden_states,
|
| 656 |
+
)
|
| 657 |
+
|
| 658 |
+
def prepare_inputs_for_generation(
|
| 659 |
+
self,
|
| 660 |
+
input_ids,
|
| 661 |
+
past_key_values=None,
|
| 662 |
+
inputs_embeds=None,
|
| 663 |
+
pixel_values=None,
|
| 664 |
+
attention_mask=None,
|
| 665 |
+
cache_position=None,
|
| 666 |
+
logits_to_keep=None,
|
| 667 |
+
**kwargs,
|
| 668 |
+
):
|
| 669 |
+
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
|
| 670 |
+
model_inputs = super().prepare_inputs_for_generation(
|
| 671 |
+
input_ids,
|
| 672 |
+
past_key_values=past_key_values,
|
| 673 |
+
inputs_embeds=inputs_embeds,
|
| 674 |
+
attention_mask=attention_mask,
|
| 675 |
+
cache_position=cache_position,
|
| 676 |
+
logits_to_keep=logits_to_keep,
|
| 677 |
+
**kwargs,
|
| 678 |
+
)
|
| 679 |
+
|
| 680 |
+
if cache_position[0] == 0:
|
| 681 |
+
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
|
| 682 |
+
# Otherwise we need pixel values to be passed to model
|
| 683 |
+
model_inputs["pixel_values"] = pixel_values
|
| 684 |
+
|
| 685 |
+
return model_inputs
|
| 686 |
+
|
| 687 |
+
|
| 688 |
+
__all__ = ["Lfm2VlForConditionalGeneration", "Lfm2VlModel", "Lfm2VlPreTrainedModel"]
|