Integrate `trust_remote_code` and `sentence_transformers` (#9)
Browse files- Integrate `trust_remote_code` and `sentence_transformers` (91b4ea93df6cefd45dde4ff65cdbe5e5dfc73b4f)
- Create 1_Pooling/config.json (f8efda76aad2fba36a7bb60d4d1d5afb461fe034)
- Update config.json (aa514959fedd5cef264246d24e2400aca0d67b82)
- Create config_sentence_transformers.json (eb0f9bec0d98e58568e098cacd619b304ef0a329)
- Create custom_st.py (64a2954f75ac37af17f7431e6d93753a4fa46ad3)
- Create modules.json (51f2ba553d618f18cb005d2e2e244ab821e14ba6)
- Update README.md (54e1aba8eec2520ba49966da794a703dde20a7f0)
- 1_Pooling/config.json +10 -0
- README.md +61 -24
- config.json +6 -4
- config_sentence_transformers.json +7 -0
- custom_st.py +221 -0
- modeling_gme_qwen2vl.py +313 -0
- modules.json +20 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 3584,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": false,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": true,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
CHANGED
|
@@ -3691,57 +3691,94 @@ The `GME` models support three types of input: **text**, **image**, and **image-
|
|
| 3691 |
|[`gme-Qwen2-VL-2B`](https://huggingface.co/Alibaba-NLP/gme-Qwen2-VL-2B-Instruct) | 2.21B | 32768 | 1536 | 65.27 | 68.41 | 64.45 |
|
| 3692 |
|[`gme-Qwen2-VL-7B`](https://huggingface.co/Alibaba-NLP/gme-Qwen2-VL-7B-Instruct) | 8.29B | 32768 | 3584 | 67.48 | 71.36 | 67.44 |
|
| 3693 |
|
|
|
|
|
|
|
| 3694 |
## Usage
|
| 3695 |
-
**Use with custom code**
|
| 3696 |
|
| 3697 |
-
```python
|
| 3698 |
-
# You can find the script gme_inference.py in https://huggingface.co/Alibaba-NLP/gme-Qwen2-VL-2B-Instruct/blob/main/gme_inference.py
|
| 3699 |
-
from gme_inference import GmeQwen2VL
|
| 3700 |
|
| 3701 |
-
|
| 3702 |
|
|
|
|
|
|
|
| 3703 |
texts = [
|
| 3704 |
-
"
|
| 3705 |
-
"
|
| 3706 |
]
|
| 3707 |
images = [
|
| 3708 |
-
'https://
|
| 3709 |
-
'https://
|
| 3710 |
]
|
| 3711 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3712 |
# Single-modal embedding
|
| 3713 |
e_text = gme.get_text_embeddings(texts=texts)
|
| 3714 |
e_image = gme.get_image_embeddings(images=images)
|
| 3715 |
-
print((e_text
|
| 3716 |
-
##
|
| 3717 |
|
| 3718 |
# How to set embedding instruction
|
| 3719 |
-
e_query = gme.get_text_embeddings(texts=texts, instruction=
|
| 3720 |
# If is_query=False, we always use the default instruction.
|
| 3721 |
e_corpus = gme.get_image_embeddings(images=images, is_query=False)
|
| 3722 |
-
print((e_query
|
| 3723 |
-
##
|
| 3724 |
|
| 3725 |
# Fused-modal embedding
|
| 3726 |
e_fused = gme.get_fused_embeddings(texts=texts, images=images)
|
| 3727 |
-
print((e_fused
|
| 3728 |
-
##
|
| 3729 |
-
|
| 3730 |
```
|
| 3731 |
|
| 3732 |
-
|
| 3733 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3734 |
|
| 3735 |
```python
|
| 3736 |
-
|
|
|
|
| 3737 |
|
| 3738 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3739 |
|
| 3740 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3741 |
```
|
| 3742 |
|
| 3743 |
-
|
| 3744 |
-
-->
|
| 3745 |
|
| 3746 |
## Evaluation
|
| 3747 |
|
|
|
|
| 3691 |
|[`gme-Qwen2-VL-2B`](https://huggingface.co/Alibaba-NLP/gme-Qwen2-VL-2B-Instruct) | 2.21B | 32768 | 1536 | 65.27 | 68.41 | 64.45 |
|
| 3692 |
|[`gme-Qwen2-VL-7B`](https://huggingface.co/Alibaba-NLP/gme-Qwen2-VL-7B-Instruct) | 8.29B | 32768 | 3584 | 67.48 | 71.36 | 67.44 |
|
| 3693 |
|
| 3694 |
+
|
| 3695 |
+
|
| 3696 |
## Usage
|
|
|
|
| 3697 |
|
|
|
|
|
|
|
|
|
|
| 3698 |
|
| 3699 |
+
**Transformers**
|
| 3700 |
|
| 3701 |
+
```python
|
| 3702 |
+
t2i_prompt = 'Find an image that matches the given text.'
|
| 3703 |
texts = [
|
| 3704 |
+
"The Tesla Cybertruck is a battery electric pickup truck built by Tesla, Inc. since 2023.",
|
| 3705 |
+
"Alibaba office.",
|
| 3706 |
]
|
| 3707 |
images = [
|
| 3708 |
+
'https://upload.wikimedia.org/wikipedia/commons/e/e9/Tesla_Cybertruck_damaged_window.jpg',
|
| 3709 |
+
'https://upload.wikimedia.org/wikipedia/commons/e/e0/TaobaoCity_Alibaba_Xixi_Park.jpg',
|
| 3710 |
]
|
| 3711 |
|
| 3712 |
+
|
| 3713 |
+
gme = AutoModel.from_pretrained(
|
| 3714 |
+
"Alibaba-NLP/gme-Qwen2-VL-7B-Instruct",
|
| 3715 |
+
torch_dtype="float16", device_map='cuda', trust_remote_code=True
|
| 3716 |
+
)
|
| 3717 |
+
|
| 3718 |
+
|
| 3719 |
# Single-modal embedding
|
| 3720 |
e_text = gme.get_text_embeddings(texts=texts)
|
| 3721 |
e_image = gme.get_image_embeddings(images=images)
|
| 3722 |
+
print('Single-modal', (e_text @ e_image.T).tolist())
|
| 3723 |
+
## Single-modal [[0.279296875, 0.0002658367156982422], [0.06427001953125, 0.304443359375]]
|
| 3724 |
|
| 3725 |
# How to set embedding instruction
|
| 3726 |
+
e_query = gme.get_text_embeddings(texts=texts, instruction=t2i_prompt)
|
| 3727 |
# If is_query=False, we always use the default instruction.
|
| 3728 |
e_corpus = gme.get_image_embeddings(images=images, is_query=False)
|
| 3729 |
+
print('Single-modal with instruction', (e_query @ e_corpus.T).tolist())
|
| 3730 |
+
## Single-modal with instruction [[0.32861328125, 0.026336669921875], [0.09466552734375, 0.3134765625]]
|
| 3731 |
|
| 3732 |
# Fused-modal embedding
|
| 3733 |
e_fused = gme.get_fused_embeddings(texts=texts, images=images)
|
| 3734 |
+
print('Fused-modal', (e_fused @ e_fused.T).tolist())
|
| 3735 |
+
## Fused-modal [[1.0, 0.0308685302734375], [0.0308685302734375, 1.0]]
|
|
|
|
| 3736 |
```
|
| 3737 |
|
| 3738 |
+
|
| 3739 |
+
**sentence_transformers**
|
| 3740 |
+
|
| 3741 |
+
The `encode` function accept `str` or `dict` with key(s) in `{'text', 'image', 'prompt'}`.
|
| 3742 |
+
|
| 3743 |
+
**Do not pass `prompt` as the argument to `encode`**, pass as the input as a `dict` with a `prompt` key.
|
| 3744 |
|
| 3745 |
```python
|
| 3746 |
+
from sentence_transformers import SentenceTransformer
|
| 3747 |
+
|
| 3748 |
|
| 3749 |
+
t2i_prompt = 'Find an image that matches the given text.'
|
| 3750 |
+
texts = [
|
| 3751 |
+
"The Tesla Cybertruck is a battery electric pickup truck built by Tesla, Inc. since 2023.",
|
| 3752 |
+
"Alibaba office.",
|
| 3753 |
+
]
|
| 3754 |
+
images = [
|
| 3755 |
+
'https://upload.wikimedia.org/wikipedia/commons/e/e9/Tesla_Cybertruck_damaged_window.jpg',
|
| 3756 |
+
'https://upload.wikimedia.org/wikipedia/commons/e/e0/TaobaoCity_Alibaba_Xixi_Park.jpg',
|
| 3757 |
+
]
|
| 3758 |
+
|
| 3759 |
+
|
| 3760 |
+
gme_st = SentenceTransformer("Alibaba-NLP/gme-Qwen2-VL-7B-Instruct")
|
| 3761 |
|
| 3762 |
+
# Single-modal embedding
|
| 3763 |
+
e_text = gme_st.encode(texts, convert_to_tensor=True)
|
| 3764 |
+
e_image = gme_st.encode([dict(image=i) for i in images], convert_to_tensor=True)
|
| 3765 |
+
print('Single-modal', (e_text @ e_image.T).tolist())
|
| 3766 |
+
## Single-modal [[0.27880859375, 0.0005745887756347656], [0.06500244140625, 0.306640625]]
|
| 3767 |
+
|
| 3768 |
+
# How to set embedding instruction
|
| 3769 |
+
e_query = gme_st.encode([dict(text=t, prompt=t2i_prompt) for t in texts], convert_to_tensor=True)
|
| 3770 |
+
# If no prompt, we always use the default instruction.
|
| 3771 |
+
e_corpus = gme_st.encode([dict(image=i) for i in images], convert_to_tensor=True)
|
| 3772 |
+
print('Single-modal with instruction', (e_query @ e_corpus.T).tolist())
|
| 3773 |
+
## Single-modal with instruction [[0.328369140625, 0.0269927978515625], [0.09521484375, 0.316162109375]]
|
| 3774 |
+
|
| 3775 |
+
# Fused-modal embedding
|
| 3776 |
+
e_fused = gme_st.encode([dict(text=t, image=i) for t, i in zip(texts, images)], convert_to_tensor=True)
|
| 3777 |
+
print('Fused-modal', (e_fused @ e_fused.T).tolist())
|
| 3778 |
+
## Fused-modal [[0.99951171875, 0.0311737060546875], [0.0311737060546875, 1.0009765625]]
|
| 3779 |
```
|
| 3780 |
|
| 3781 |
+
|
|
|
|
| 3782 |
|
| 3783 |
## Evaluation
|
| 3784 |
|
config.json
CHANGED
|
@@ -1,8 +1,10 @@
|
|
| 1 |
{
|
| 2 |
-
"_name_or_path": "gme-Qwen2-VL-7B-Instruct",
|
| 3 |
-
"architectures": [
|
| 4 |
-
|
| 5 |
-
|
|
|
|
|
|
|
| 6 |
"attention_dropout": 0.0,
|
| 7 |
"bos_token_id": 151643,
|
| 8 |
"eos_token_id": 151645,
|
|
|
|
| 1 |
{
|
| 2 |
+
"_name_or_path": "Alibaba-NLP/gme-Qwen2-VL-7B-Instruct",
|
| 3 |
+
"architectures": ["GmeQwen2VLForVision2Seq"],
|
| 4 |
+
"auto_map": {
|
| 5 |
+
"AutoModel": "modeling_gme_qwen2vl.GmeQwen2VLForVision2Seq",
|
| 6 |
+
"AutoConfig": "modeling_gme_qwen2vl.GmeQwen2VLConfig"
|
| 7 |
+
},
|
| 8 |
"attention_dropout": 0.0,
|
| 9 |
"bos_token_id": 151643,
|
| 10 |
"eos_token_id": 151645,
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"prompts": {
|
| 3 |
+
"query": "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
|
| 4 |
+
},
|
| 5 |
+
"default_prompt_name": null,
|
| 6 |
+
"similarity_fn_name": null
|
| 7 |
+
}
|
custom_st.py
ADDED
|
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from io import BytesIO
|
| 2 |
+
from typing import Any, Dict, Optional, List
|
| 3 |
+
import torch
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from sentence_transformers.models import Transformer as BaseTransformer
|
| 6 |
+
from transformers import AutoModelForVision2Seq, AutoProcessor
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class MultiModalTransformer(BaseTransformer):
|
| 10 |
+
def __init__(
|
| 11 |
+
self,
|
| 12 |
+
model_name_or_path: str,
|
| 13 |
+
cache_dir: Optional[str] = None,
|
| 14 |
+
tokenizer_args: Optional[Dict[str, Any]] = None,
|
| 15 |
+
min_image_tokens: int = 256,
|
| 16 |
+
max_image_tokens: int = 1280,
|
| 17 |
+
max_length: int = 1800,
|
| 18 |
+
**kwargs,
|
| 19 |
+
):
|
| 20 |
+
super().__init__(model_name_or_path, **kwargs)
|
| 21 |
+
if tokenizer_args is None:
|
| 22 |
+
tokenizer_args = {}
|
| 23 |
+
tokenizer_args.pop("trust_remote_code", None)
|
| 24 |
+
|
| 25 |
+
# Initialize processor
|
| 26 |
+
min_pixels = min_image_tokens * 28 * 28
|
| 27 |
+
max_pixels = max_image_tokens * 28 * 28
|
| 28 |
+
self.processor = AutoProcessor.from_pretrained(
|
| 29 |
+
model_name_or_path, min_pixels=min_pixels, max_pixels=max_pixels, **kwargs
|
| 30 |
+
)
|
| 31 |
+
self.processor.tokenizer.padding_side = 'right'
|
| 32 |
+
self.sep = ' '
|
| 33 |
+
self.max_length = max_length
|
| 34 |
+
self.normalize = True
|
| 35 |
+
|
| 36 |
+
def _load_model(
|
| 37 |
+
self,
|
| 38 |
+
model_name_or_path: str,
|
| 39 |
+
config,
|
| 40 |
+
cache_dir: str,
|
| 41 |
+
backend: str,
|
| 42 |
+
is_peft_model: bool,
|
| 43 |
+
**model_args,
|
| 44 |
+
) -> None:
|
| 45 |
+
model_args.pop("trust_remote_code", None)
|
| 46 |
+
self.auto_model = AutoModelForVision2Seq.from_pretrained(
|
| 47 |
+
model_name_or_path, torch_dtype=torch.float16, **model_args
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
def forward(
|
| 51 |
+
self, features: Dict[str, torch.Tensor], **kwargs
|
| 52 |
+
) -> Dict[str, torch.Tensor]:
|
| 53 |
+
if features.get("inputs_embeds", None) is None:
|
| 54 |
+
features["inputs_embeds"] = self.auto_model.base_model.embed_tokens(features["input_ids"])
|
| 55 |
+
if features.get("pixel_values", None) is not None:
|
| 56 |
+
features["pixel_values"] = features["pixel_values"].type(self.auto_model.visual.get_dtype())
|
| 57 |
+
image_embeds = self.auto_model.visual(
|
| 58 |
+
features["pixel_values"], grid_thw=features["image_grid_thw"]
|
| 59 |
+
)
|
| 60 |
+
image_mask = features["input_ids"] == self.auto_model.config.image_token_id
|
| 61 |
+
features["inputs_embeds"][image_mask] = image_embeds
|
| 62 |
+
# features.pop("pixel_values")
|
| 63 |
+
# features.pop("image_grid_thw")
|
| 64 |
+
# features.pop("input_ids")
|
| 65 |
+
inputs = {k: v for k, v in features.items() if k in 'position_ids,attention_mask,inputs_embeds'}
|
| 66 |
+
outputs = self.auto_model.model(
|
| 67 |
+
**inputs,
|
| 68 |
+
return_dict=True,
|
| 69 |
+
output_hidden_states=True,
|
| 70 |
+
# **kwargs
|
| 71 |
+
)
|
| 72 |
+
# pooling_mask = features["attention_mask"] if features.get("pooling_mask", None) is None else features["pooling_mask"]
|
| 73 |
+
# left_padding = (pooling_mask[:, -1].sum() == pooling_mask.shape[0]) # TODO
|
| 74 |
+
# if left_padding:
|
| 75 |
+
# embeddings = outputs.last_hidden_state
|
| 76 |
+
# else:
|
| 77 |
+
# sequence_lengths = pooling_mask.sum(dim=1) - 1
|
| 78 |
+
# embeddings = outputs.last_hidden_state[torch.arange(
|
| 79 |
+
# outputs.last_hidden_state.shape[0], device=outputs.last_hidden_state.device
|
| 80 |
+
# ), sequence_lengths]
|
| 81 |
+
features.update({"token_embeddings": outputs.last_hidden_state})
|
| 82 |
+
return features
|
| 83 |
+
|
| 84 |
+
def tokenize(self, texts: List[List[Dict[str, Any]]] | List[str]) -> Dict[str, torch.Tensor]:
|
| 85 |
+
default_instruction = 'You are a helpful assistant.'
|
| 86 |
+
|
| 87 |
+
all_texts, all_images = list(), list()
|
| 88 |
+
for item in texts:
|
| 89 |
+
if isinstance(item, str):
|
| 90 |
+
txt, img, inst = item, None, default_instruction
|
| 91 |
+
elif isinstance(item, dict):
|
| 92 |
+
txt = item.get('text', None)
|
| 93 |
+
img = item.get('image', None)
|
| 94 |
+
inst = item.get('prompt', default_instruction)
|
| 95 |
+
else:
|
| 96 |
+
raise RuntimeError(f'Input format not supported! {item=}')
|
| 97 |
+
|
| 98 |
+
input_str = ''
|
| 99 |
+
if img is None:
|
| 100 |
+
all_images = None # All examples in the same batch are consistent
|
| 101 |
+
# or will have ValueError: Could not make a flat list of images from xxxx
|
| 102 |
+
else:
|
| 103 |
+
input_str += '<|vision_start|><|image_pad|><|vision_end|>'
|
| 104 |
+
img = fetch_image(img)
|
| 105 |
+
all_images.append(img)
|
| 106 |
+
if txt is not None:
|
| 107 |
+
input_str += txt
|
| 108 |
+
msg = f'<|im_start|>system\n{inst}<|im_end|>\n<|im_start|>user\n{input_str}<|im_end|>\n<|im_start|>assistant\n<|endoftext|>'
|
| 109 |
+
all_texts.append(msg)
|
| 110 |
+
|
| 111 |
+
inputs = self.processor(
|
| 112 |
+
text=all_texts,
|
| 113 |
+
images=all_images,
|
| 114 |
+
padding="longest",
|
| 115 |
+
truncation=True,
|
| 116 |
+
max_length=self.max_seq_length,
|
| 117 |
+
return_tensors='pt'
|
| 118 |
+
)
|
| 119 |
+
return inputs
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
### Copied from qwen_vl_utils.vision_process.py
|
| 123 |
+
import base64
|
| 124 |
+
from io import BytesIO
|
| 125 |
+
import requests
|
| 126 |
+
|
| 127 |
+
IMAGE_FACTOR = 28
|
| 128 |
+
MIN_PIXELS = 4 * 28 * 28
|
| 129 |
+
MAX_PIXELS = 16384 * 28 * 28
|
| 130 |
+
MAX_RATIO = 200
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def round_by_factor(number: int, factor: int) -> int:
|
| 134 |
+
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
|
| 135 |
+
return round(number / factor) * factor
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
def ceil_by_factor(number: int, factor: int) -> int:
|
| 139 |
+
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
|
| 140 |
+
return math.ceil(number / factor) * factor
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
def floor_by_factor(number: int, factor: int) -> int:
|
| 144 |
+
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
|
| 145 |
+
return math.floor(number / factor) * factor
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def smart_resize(
|
| 149 |
+
height: int, width: int, factor: int = IMAGE_FACTOR, min_pixels: int = MIN_PIXELS, max_pixels: int = MAX_PIXELS
|
| 150 |
+
) -> tuple[int, int]:
|
| 151 |
+
"""
|
| 152 |
+
Rescales the image so that the following conditions are met:
|
| 153 |
+
|
| 154 |
+
1. Both dimensions (height and width) are divisible by 'factor'.
|
| 155 |
+
|
| 156 |
+
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
|
| 157 |
+
|
| 158 |
+
3. The aspect ratio of the image is maintained as closely as possible.
|
| 159 |
+
"""
|
| 160 |
+
h_bar = max(factor, round_by_factor(height, factor))
|
| 161 |
+
w_bar = max(factor, round_by_factor(width, factor))
|
| 162 |
+
if h_bar * w_bar > max_pixels:
|
| 163 |
+
beta = math.sqrt((height * width) / max_pixels)
|
| 164 |
+
h_bar = floor_by_factor(height / beta, factor)
|
| 165 |
+
w_bar = floor_by_factor(width / beta, factor)
|
| 166 |
+
elif h_bar * w_bar < min_pixels:
|
| 167 |
+
beta = math.sqrt(min_pixels / (height * width))
|
| 168 |
+
h_bar = ceil_by_factor(height * beta, factor)
|
| 169 |
+
w_bar = ceil_by_factor(width * beta, factor)
|
| 170 |
+
|
| 171 |
+
if max(h_bar, w_bar) / min(h_bar, w_bar) > MAX_RATIO:
|
| 172 |
+
logging.warning(
|
| 173 |
+
f"Absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(h_bar, w_bar) / min(h_bar, w_bar)}"
|
| 174 |
+
)
|
| 175 |
+
if h_bar > w_bar:
|
| 176 |
+
h_bar = w_bar * MAX_RATIO
|
| 177 |
+
else:
|
| 178 |
+
w_bar = h_bar * MAX_RATIO
|
| 179 |
+
return h_bar, w_bar
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
def fetch_image(image: str | Image.Image, size_factor: int = IMAGE_FACTOR) -> Image.Image:
|
| 183 |
+
image_obj = None
|
| 184 |
+
if isinstance(image, Image.Image):
|
| 185 |
+
image_obj = image
|
| 186 |
+
elif image.startswith("http://") or image.startswith("https://"):
|
| 187 |
+
image_obj = Image.open(requests.get(image, stream=True).raw)
|
| 188 |
+
elif image.startswith("file://"):
|
| 189 |
+
image_obj = Image.open(image[7:])
|
| 190 |
+
elif image.startswith("data:image"):
|
| 191 |
+
if "base64," in image:
|
| 192 |
+
_, base64_data = image.split("base64,", 1)
|
| 193 |
+
data = base64.b64decode(base64_data)
|
| 194 |
+
image_obj = Image.open(BytesIO(data))
|
| 195 |
+
else:
|
| 196 |
+
image_obj = Image.open(image)
|
| 197 |
+
if image_obj is None:
|
| 198 |
+
raise ValueError(f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}")
|
| 199 |
+
image = image_obj.convert("RGB")
|
| 200 |
+
## resize
|
| 201 |
+
# if "resized_height" in ele and "resized_width" in ele:
|
| 202 |
+
# resized_height, resized_width = smart_resize(
|
| 203 |
+
# ele["resized_height"],
|
| 204 |
+
# ele["resized_width"],
|
| 205 |
+
# factor=size_factor,
|
| 206 |
+
# )
|
| 207 |
+
# else:
|
| 208 |
+
width, height = image.size
|
| 209 |
+
# min_pixels = ele.get("min_pixels", MIN_PIXELS)
|
| 210 |
+
# max_pixels = ele.get("max_pixels", MAX_PIXELS)
|
| 211 |
+
resized_height, resized_width = smart_resize(
|
| 212 |
+
height,
|
| 213 |
+
width,
|
| 214 |
+
factor=size_factor,
|
| 215 |
+
min_pixels=MIN_PIXELS,
|
| 216 |
+
max_pixels=MAX_PIXELS,
|
| 217 |
+
)
|
| 218 |
+
image = image.resize((resized_width, resized_height))
|
| 219 |
+
|
| 220 |
+
return image
|
| 221 |
+
###
|
modeling_gme_qwen2vl.py
ADDED
|
@@ -0,0 +1,313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import base64
|
| 4 |
+
import logging
|
| 5 |
+
import math
|
| 6 |
+
import os
|
| 7 |
+
from io import BytesIO
|
| 8 |
+
from typing import Any, Dict, List, Optional, Union
|
| 9 |
+
|
| 10 |
+
import requests
|
| 11 |
+
import torch
|
| 12 |
+
from PIL import Image
|
| 13 |
+
from torch.utils.data import DataLoader
|
| 14 |
+
from tqdm.autonotebook import tqdm
|
| 15 |
+
from transformers import (
|
| 16 |
+
AutoProcessor,
|
| 17 |
+
PreTrainedModel,
|
| 18 |
+
Qwen2VLConfig,
|
| 19 |
+
Qwen2VLForConditionalGeneration,
|
| 20 |
+
)
|
| 21 |
+
import os
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class GmeQwen2VLConfig(Qwen2VLConfig):
|
| 25 |
+
def __init__(
|
| 26 |
+
self,
|
| 27 |
+
min_image_tokens: int = 256,
|
| 28 |
+
max_image_tokens: int = 1280,
|
| 29 |
+
max_length: int = 1800,
|
| 30 |
+
**kwargs: Any,
|
| 31 |
+
) -> None:
|
| 32 |
+
super().__init__(**kwargs)
|
| 33 |
+
self.min_image_tokens = min_image_tokens
|
| 34 |
+
self.max_image_tokens = max_image_tokens
|
| 35 |
+
self.max_length = max_length
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class GmeQwen2VLForVision2Seq(PreTrainedModel):
|
| 39 |
+
config_class = GmeQwen2VLConfig
|
| 40 |
+
base_model_prefix: str = "base"
|
| 41 |
+
|
| 42 |
+
def __init__(self, config: GmeQwen2VLConfig, **kwargs: Any) -> None:
|
| 43 |
+
super().__init__(config)
|
| 44 |
+
self.base = Qwen2VLForConditionalGeneration.from_pretrained(config._name_or_path)
|
| 45 |
+
self.base.tie_weights() # It's important to produce same outputs.
|
| 46 |
+
|
| 47 |
+
min_pixels: int = config.min_image_tokens * 28 * 28
|
| 48 |
+
max_pixels: int = config.max_image_tokens * 28 * 28
|
| 49 |
+
self.processor = AutoProcessor.from_pretrained(
|
| 50 |
+
config._name_or_path, min_pixels=min_pixels, max_pixels=max_pixels, **kwargs
|
| 51 |
+
)
|
| 52 |
+
self.max_length: int = config.max_length
|
| 53 |
+
self.normalize: bool = True
|
| 54 |
+
self.processor.tokenizer.padding_side = "right"
|
| 55 |
+
self.default_instruction: str = "You are a helpful assistant."
|
| 56 |
+
self.sep: str = " "
|
| 57 |
+
|
| 58 |
+
def forward(
|
| 59 |
+
self,
|
| 60 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 61 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 62 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 63 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 64 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 65 |
+
pixel_values: Optional[torch.Tensor] = None,
|
| 66 |
+
# pixel_values_videos: Optional[torch.FloatTensor] = None,
|
| 67 |
+
image_grid_thw: Optional[torch.LongTensor] = None,
|
| 68 |
+
# video_grid_thw: Optional[torch.LongTensor] = None,
|
| 69 |
+
pooling_mask: Optional[torch.LongTensor] = None,
|
| 70 |
+
**kwargs
|
| 71 |
+
) -> torch.Tensor:
|
| 72 |
+
if inputs_embeds is None:
|
| 73 |
+
inputs_embeds = self.base.model.embed_tokens(input_ids)
|
| 74 |
+
if pixel_values is not None:
|
| 75 |
+
pixel_values = pixel_values.type(self.base.visual.get_dtype())
|
| 76 |
+
image_embeds = self.base.visual(pixel_values, grid_thw=image_grid_thw).to(inputs_embeds.device)
|
| 77 |
+
image_mask = input_ids == self.base.config.image_token_id
|
| 78 |
+
inputs_embeds[image_mask] = image_embeds
|
| 79 |
+
# if pixel_values_videos is not None:
|
| 80 |
+
# pixel_values_videos = pixel_values_videos.type(self.base.visual.get_dtype())
|
| 81 |
+
# video_embeds = self.base.visual(pixel_values_videos, grid_thw=video_grid_thw).to(inputs_embeds.device)
|
| 82 |
+
# video_mask = input_ids == self.base.config.video_token_id
|
| 83 |
+
# inputs_embeds[video_mask] = video_embeds
|
| 84 |
+
if attention_mask is not None:
|
| 85 |
+
attention_mask = attention_mask.to(inputs_embeds.device)
|
| 86 |
+
|
| 87 |
+
outputs = self.base.model(
|
| 88 |
+
input_ids=None,
|
| 89 |
+
position_ids=position_ids,
|
| 90 |
+
attention_mask=attention_mask,
|
| 91 |
+
past_key_values=past_key_values,
|
| 92 |
+
inputs_embeds=inputs_embeds,
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
pooling_mask = attention_mask if pooling_mask is None else pooling_mask
|
| 96 |
+
left_padding = (pooling_mask[:, -1].sum() == pooling_mask.shape[0]) # TODO
|
| 97 |
+
if left_padding:
|
| 98 |
+
embeddings = outputs.last_hidden_state[:, -1]
|
| 99 |
+
else:
|
| 100 |
+
sequence_lengths = pooling_mask.sum(dim=1) - 1
|
| 101 |
+
batch_size = outputs.last_hidden_state.shape[0]
|
| 102 |
+
embeddings = outputs.last_hidden_state[torch.arange(
|
| 103 |
+
batch_size, device=outputs.last_hidden_state.device
|
| 104 |
+
), sequence_lengths]
|
| 105 |
+
if self.normalize:
|
| 106 |
+
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
|
| 107 |
+
return embeddings.contiguous()
|
| 108 |
+
|
| 109 |
+
def embed(self, texts: list[str], images: list[Image.Image], is_query=True, instruction=None, **kwargs):
|
| 110 |
+
self.eval()
|
| 111 |
+
# Inputs must be batched
|
| 112 |
+
input_texts, input_images = list(), list()
|
| 113 |
+
for t, i in zip(texts, images):
|
| 114 |
+
if not is_query or instruction is None:
|
| 115 |
+
instruction = self.default_instruction
|
| 116 |
+
input_str = ''
|
| 117 |
+
if i is None:
|
| 118 |
+
input_images = None # All examples in the same batch are consistent
|
| 119 |
+
else:
|
| 120 |
+
input_str += '<|vision_start|><|image_pad|><|vision_end|>'
|
| 121 |
+
i = fetch_image(i)
|
| 122 |
+
input_images.append(i)
|
| 123 |
+
if t is not None:
|
| 124 |
+
input_str += t
|
| 125 |
+
msg = f'<|im_start|>system\n{instruction}<|im_end|>\n<|im_start|>user\n{input_str}<|im_end|>\n<|im_start|>assistant\n<|endoftext|>'
|
| 126 |
+
input_texts.append(msg)
|
| 127 |
+
|
| 128 |
+
inputs = self.processor(
|
| 129 |
+
text=input_texts,
|
| 130 |
+
images=input_images,
|
| 131 |
+
padding=True,
|
| 132 |
+
truncation=True,
|
| 133 |
+
max_length=self.max_length,
|
| 134 |
+
return_tensors='pt'
|
| 135 |
+
)
|
| 136 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()} # TODO
|
| 137 |
+
with torch.inference_mode():
|
| 138 |
+
embeddings = self.forward(**inputs)
|
| 139 |
+
return embeddings
|
| 140 |
+
|
| 141 |
+
def encode(self, sentences: list[str], *, prompt_name=None, **kwargs):
|
| 142 |
+
return self.get_fused_embeddings(texts=sentences, prompt_name=prompt_name, **kwargs)
|
| 143 |
+
|
| 144 |
+
def encode_queries(self, queries: List[str], **kwargs):
|
| 145 |
+
embeddings = self.encode(queries, **kwargs)
|
| 146 |
+
return embeddings
|
| 147 |
+
|
| 148 |
+
def encode_corpus(self, corpus: List[Dict[str, str]], **kwargs):
|
| 149 |
+
if type(corpus) is dict:
|
| 150 |
+
sentences = [
|
| 151 |
+
(corpus["title"][i] + self.sep + corpus["text"][i]).strip()
|
| 152 |
+
if "title" in corpus
|
| 153 |
+
else corpus["text"][i].strip()
|
| 154 |
+
for i in range(len(corpus["text"]))
|
| 155 |
+
]
|
| 156 |
+
else:
|
| 157 |
+
sentences = [
|
| 158 |
+
(doc["title"] + self.sep + doc["text"]).strip() if "title" in doc else doc["text"].strip()
|
| 159 |
+
for doc in corpus
|
| 160 |
+
]
|
| 161 |
+
embeddings = self.encode(sentences, is_query=False, **kwargs)
|
| 162 |
+
return embeddings
|
| 163 |
+
|
| 164 |
+
def get_image_embeddings(self, images: list[Image.Image] | DataLoader, **kwargs):
|
| 165 |
+
return self.get_fused_embeddings(images=images, **kwargs)
|
| 166 |
+
|
| 167 |
+
def get_text_embeddings(self, texts: list[str], **kwargs):
|
| 168 |
+
return self.get_fused_embeddings(texts=texts, **kwargs)
|
| 169 |
+
|
| 170 |
+
def get_fused_embeddings(self, texts: list[str] = None, images: list[Image.Image] | DataLoader = None, **kwargs):
|
| 171 |
+
if isinstance(images, DataLoader):
|
| 172 |
+
image_loader = images
|
| 173 |
+
batch_size = image_loader.batch_size
|
| 174 |
+
image_loader.dataset.transform = None
|
| 175 |
+
else:
|
| 176 |
+
batch_size = kwargs.pop('batch_size', 32)
|
| 177 |
+
if images is None:
|
| 178 |
+
image_loader = None
|
| 179 |
+
else:
|
| 180 |
+
image_loader = DataLoader(
|
| 181 |
+
images,
|
| 182 |
+
batch_size=batch_size,
|
| 183 |
+
shuffle=False,
|
| 184 |
+
collate_fn=custom_collate_fn,
|
| 185 |
+
num_workers=min(math.floor(os.cpu_count() / 2), 8),
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
if texts is None:
|
| 189 |
+
assert image_loader is not None
|
| 190 |
+
n_batch = len(image_loader)
|
| 191 |
+
else:
|
| 192 |
+
n_batch = len(texts) // batch_size + int(len(texts) % batch_size > 0)
|
| 193 |
+
image_loader = image_loader or [None] * n_batch
|
| 194 |
+
|
| 195 |
+
all_embeddings = list()
|
| 196 |
+
none_batch = [None] * batch_size
|
| 197 |
+
show_progress_bar = kwargs.pop('show_progress_bar', False)
|
| 198 |
+
pbar = tqdm(total=n_batch, disable=not show_progress_bar, mininterval=1, miniters=10, desc='encode')
|
| 199 |
+
for n, img_batch in zip(range(0, n_batch * batch_size, batch_size), image_loader):
|
| 200 |
+
text_batch = none_batch if texts is None else texts[n: n+batch_size]
|
| 201 |
+
img_batch = none_batch if img_batch is None else img_batch
|
| 202 |
+
embeddings = self.embed(texts=text_batch, images=img_batch, **kwargs)
|
| 203 |
+
pbar.update(1)
|
| 204 |
+
all_embeddings.append(embeddings.cpu())
|
| 205 |
+
pbar.close()
|
| 206 |
+
all_embeddings = torch.cat(all_embeddings, dim=0)
|
| 207 |
+
return all_embeddings
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
def custom_collate_fn(batch):
|
| 211 |
+
return batch
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
### Copied from qwen_vl_utils.vision_process.py
|
| 215 |
+
import base64
|
| 216 |
+
from io import BytesIO
|
| 217 |
+
import requests
|
| 218 |
+
|
| 219 |
+
IMAGE_FACTOR = 28
|
| 220 |
+
MIN_PIXELS = 4 * 28 * 28
|
| 221 |
+
MAX_PIXELS = 16384 * 28 * 28
|
| 222 |
+
MAX_RATIO = 200
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def round_by_factor(number: int, factor: int) -> int:
|
| 226 |
+
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
|
| 227 |
+
return round(number / factor) * factor
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
def ceil_by_factor(number: int, factor: int) -> int:
|
| 231 |
+
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
|
| 232 |
+
return math.ceil(number / factor) * factor
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
def floor_by_factor(number: int, factor: int) -> int:
|
| 236 |
+
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
|
| 237 |
+
return math.floor(number / factor) * factor
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
def smart_resize(
|
| 241 |
+
height: int, width: int, factor: int = IMAGE_FACTOR, min_pixels: int = MIN_PIXELS, max_pixels: int = MAX_PIXELS
|
| 242 |
+
) -> tuple[int, int]:
|
| 243 |
+
"""
|
| 244 |
+
Rescales the image so that the following conditions are met:
|
| 245 |
+
|
| 246 |
+
1. Both dimensions (height and width) are divisible by 'factor'.
|
| 247 |
+
|
| 248 |
+
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
|
| 249 |
+
|
| 250 |
+
3. The aspect ratio of the image is maintained as closely as possible.
|
| 251 |
+
"""
|
| 252 |
+
h_bar = max(factor, round_by_factor(height, factor))
|
| 253 |
+
w_bar = max(factor, round_by_factor(width, factor))
|
| 254 |
+
if h_bar * w_bar > max_pixels:
|
| 255 |
+
beta = math.sqrt((height * width) / max_pixels)
|
| 256 |
+
h_bar = floor_by_factor(height / beta, factor)
|
| 257 |
+
w_bar = floor_by_factor(width / beta, factor)
|
| 258 |
+
elif h_bar * w_bar < min_pixels:
|
| 259 |
+
beta = math.sqrt(min_pixels / (height * width))
|
| 260 |
+
h_bar = ceil_by_factor(height * beta, factor)
|
| 261 |
+
w_bar = ceil_by_factor(width * beta, factor)
|
| 262 |
+
|
| 263 |
+
if max(h_bar, w_bar) / min(h_bar, w_bar) > MAX_RATIO:
|
| 264 |
+
logging.warning(
|
| 265 |
+
f"Absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(h_bar, w_bar) / min(h_bar, w_bar)}"
|
| 266 |
+
)
|
| 267 |
+
if h_bar > w_bar:
|
| 268 |
+
h_bar = w_bar * MAX_RATIO
|
| 269 |
+
else:
|
| 270 |
+
w_bar = h_bar * MAX_RATIO
|
| 271 |
+
return h_bar, w_bar
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
def fetch_image(image: str | Image.Image, size_factor: int = IMAGE_FACTOR) -> Image.Image:
|
| 275 |
+
image_obj = None
|
| 276 |
+
if isinstance(image, Image.Image):
|
| 277 |
+
image_obj = image
|
| 278 |
+
elif image.startswith("http://") or image.startswith("https://"):
|
| 279 |
+
image_obj = Image.open(requests.get(image, stream=True).raw)
|
| 280 |
+
elif image.startswith("file://"):
|
| 281 |
+
image_obj = Image.open(image[7:])
|
| 282 |
+
elif image.startswith("data:image"):
|
| 283 |
+
if "base64," in image:
|
| 284 |
+
_, base64_data = image.split("base64,", 1)
|
| 285 |
+
data = base64.b64decode(base64_data)
|
| 286 |
+
image_obj = Image.open(BytesIO(data))
|
| 287 |
+
else:
|
| 288 |
+
image_obj = Image.open(image)
|
| 289 |
+
if image_obj is None:
|
| 290 |
+
raise ValueError(f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}")
|
| 291 |
+
image = image_obj.convert("RGB")
|
| 292 |
+
## resize
|
| 293 |
+
# if "resized_height" in ele and "resized_width" in ele:
|
| 294 |
+
# resized_height, resized_width = smart_resize(
|
| 295 |
+
# ele["resized_height"],
|
| 296 |
+
# ele["resized_width"],
|
| 297 |
+
# factor=size_factor,
|
| 298 |
+
# )
|
| 299 |
+
# else:
|
| 300 |
+
width, height = image.size
|
| 301 |
+
# min_pixels = ele.get("min_pixels", MIN_PIXELS)
|
| 302 |
+
# max_pixels = ele.get("max_pixels", MAX_PIXELS)
|
| 303 |
+
resized_height, resized_width = smart_resize(
|
| 304 |
+
height,
|
| 305 |
+
width,
|
| 306 |
+
factor=size_factor,
|
| 307 |
+
min_pixels=MIN_PIXELS,
|
| 308 |
+
max_pixels=MAX_PIXELS,
|
| 309 |
+
)
|
| 310 |
+
image = image.resize((resized_width, resized_height))
|
| 311 |
+
|
| 312 |
+
return image
|
| 313 |
+
###
|
modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "custom_st.MultiModalTransformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|