AndriLawrence commited on
Commit
d8ac4f9
·
verified ·
1 Parent(s): 78dfe83

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -3
README.md CHANGED
@@ -69,6 +69,8 @@ base_model:
69
 
70
  # AndriLawrence/Qwen-3B-Intent-Microplan-v2
71
 
 
 
72
  **English-only** finetune of **Qwen2.5-3B-Instruct** for **intent + microplan–driven NPC dialog**.
73
  The model reads a structured **CONTEXT JSON** (environment, relationship, mood, signals) and produces:
74
 
@@ -95,7 +97,7 @@ The model reads a structured **CONTEXT JSON** (environment, relationship, mood,
95
  ## 📦 Assets
96
 
97
  * **LoRA adapters (PEFT, SFT)** → `checkpoints/adapter_final`
98
- * **Merged FP16** → `merged/sft-fp16`
99
  * **GGUF quants (llama.cpp / llama-cpp-python)** → `gguf/sft-q6_k.gguf`, `gguf/sft-q4_k_m.gguf`
100
  * **GGUF Style Fine-tune (Example)** → `gguf/rin_style.gguf` (See fine-tuning section)
101
 
@@ -182,7 +184,7 @@ They balance creativity with JSON stability for Rin:
182
 
183
  ```json
184
  {
185
- "temperature": 0.92,
186
  "top_p": 0.90,
187
  "top_k": 40,
188
  "repetition_penalty": 1.05,
@@ -284,7 +286,7 @@ print(tok.decode(out[0], skip_special_tokens=True))
284
  ```python
285
  from transformers import AutoTokenizer, AutoModelForCausalLM
286
 
287
- MODEL = "AndriLawrence/Qwen-3B-Intent-Microplan-v2/merged/sft-fp16"
288
 
289
  tok = AutoTokenizer.from_pretrained(MODEL, use_fast=True, trust_remote_code=True)
290
  model = AutoModelForCausalLM.from_pretrained(
 
69
 
70
  # AndriLawrence/Qwen-3B-Intent-Microplan-v2
71
 
72
+ “Local-first 3B model for VR / game companions that outputs strict {dialog, intent, microplan} JSON from a CONTEXT event.”
73
+
74
  **English-only** finetune of **Qwen2.5-3B-Instruct** for **intent + microplan–driven NPC dialog**.
75
  The model reads a structured **CONTEXT JSON** (environment, relationship, mood, signals) and produces:
76
 
 
97
  ## 📦 Assets
98
 
99
  * **LoRA adapters (PEFT, SFT)** → `checkpoints/adapter_final`
100
+ * **Merged FP16** → `./`
101
  * **GGUF quants (llama.cpp / llama-cpp-python)** → `gguf/sft-q6_k.gguf`, `gguf/sft-q4_k_m.gguf`
102
  * **GGUF Style Fine-tune (Example)** → `gguf/rin_style.gguf` (See fine-tuning section)
103
 
 
184
 
185
  ```json
186
  {
187
+ "temperature": 0.65,
188
  "top_p": 0.90,
189
  "top_k": 40,
190
  "repetition_penalty": 1.05,
 
286
  ```python
287
  from transformers import AutoTokenizer, AutoModelForCausalLM
288
 
289
+ MODEL = "AndriLawrence/Qwen-3B-Intent-Microplan-v2/"
290
 
291
  tok = AutoTokenizer.from_pretrained(MODEL, use_fast=True, trust_remote_code=True)
292
  model = AutoModelForCausalLM.from_pretrained(