Update README.md
Browse files
README.md
CHANGED
|
@@ -1,77 +1,78 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
-
|
| 7 |
-
-
|
| 8 |
-
-
|
| 9 |
-
-
|
| 10 |
-
-
|
| 11 |
-
-
|
| 12 |
-
-
|
| 13 |
-
-
|
| 14 |
-
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
-
|
| 35 |
-
-
|
| 36 |
-
-
|
| 37 |
-
-
|
| 38 |
-
-
|
| 39 |
-
-
|
| 40 |
-
-
|
| 41 |
-
-
|
| 42 |
-
-
|
| 43 |
-
-
|
| 44 |
-
-
|
| 45 |
-
-
|
| 46 |
-
-
|
| 47 |
-
-
|
| 48 |
-
-
|
| 49 |
-
-
|
| 50 |
-
-
|
| 51 |
-
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
- gguf/sft-
|
| 65 |
-
|
|
|
|
| 66 |
|
| 67 |
# AndriLawrence/Qwen-3B-Intent-Microplan-v2
|
| 68 |
|
| 69 |
-
**English-only** finetune of **Qwen2.5-3B-Instruct** for **intent + microplan–driven NPC dialog**.
|
| 70 |
The model reads a structured **CONTEXT JSON** (environment, relationship, mood, signals) and produces:
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
|
| 76 |
> **v2 = refinement of v1**: cleaned & rebalanced dataset, tighter JSON guardrails, and improved persona adherence. v2 is more stable (almost no JSON leaks), better label alignment, and more consistent diegetic tone.
|
| 77 |
|
|
@@ -79,39 +80,147 @@ The model reads a structured **CONTEXT JSON** (environment, relationship, mood,
|
|
| 79 |
|
| 80 |
## 🧩 Intended Use
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
| 84 |
Model A (intent+microplan) → Model B (persona dialog), or single-shot for all three fields.
|
| 85 |
|
| 86 |
**Limitations**
|
| 87 |
-
|
|
|
|
| 88 |
|
| 89 |
---
|
| 90 |
|
| 91 |
## 📦 Assets
|
| 92 |
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
---
|
| 99 |
|
| 100 |
-
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
---
|
| 104 |
|
| 105 |
## 🧠 Output Contract
|
| 106 |
|
| 107 |
**Single JSON object**:
|
|
|
|
| 108 |
```json
|
| 109 |
{
|
| 110 |
-
"dialog": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
"intent": "invite_follow",
|
| 112 |
-
"microplan": ["
|
| 113 |
}
|
| 114 |
-
|
|
|
|
|
|
|
| 115 |
|
| 116 |
---
|
| 117 |
|
|
@@ -137,8 +246,18 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
| 137 |
model = PeftModel.from_pretrained(model, ADAPTER)
|
| 138 |
|
| 139 |
messages = [
|
| 140 |
-
{
|
| 141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
]
|
| 143 |
|
| 144 |
prompt = tok.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
|
@@ -148,8 +267,9 @@ out = model.generate(
|
|
| 148 |
**ids,
|
| 149 |
max_new_tokens=160,
|
| 150 |
do_sample=True,
|
| 151 |
-
temperature=0.
|
| 152 |
top_p=0.9,
|
|
|
|
| 153 |
repetition_penalty=1.05,
|
| 154 |
eos_token_id=tok.eos_token_id
|
| 155 |
)
|
|
@@ -160,11 +280,12 @@ print(tok.decode(out[0], skip_special_tokens=True))
|
|
| 160 |
|
| 161 |
```python
|
| 162 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
| 163 |
MODEL = "AndriLawrence/Qwen-3B-Intent-Microplan-v2/merged/sft-fp16"
|
| 164 |
|
| 165 |
tok = AutoTokenizer.from_pretrained(MODEL, use_fast=True, trust_remote_code=True)
|
| 166 |
model = AutoModelForCausalLM.from_pretrained(
|
| 167 |
-
|
| 168 |
)
|
| 169 |
```
|
| 170 |
|
|
@@ -179,8 +300,13 @@ llm = Llama.from_pretrained(
|
|
| 179 |
n_ctx=4096,
|
| 180 |
n_gpu_layers=35
|
| 181 |
)
|
|
|
|
| 182 |
resp = llm.create_chat_completion(messages=[
|
| 183 |
-
{
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
])
|
| 185 |
print(resp["choices"][0]["message"]["content"])
|
| 186 |
```
|
|
@@ -190,18 +316,30 @@ print(resp["choices"][0]["message"]["content"])
|
|
| 190 |
## 🏗️ Training Summary (v2)
|
| 191 |
|
| 192 |
* **Base**: `Qwen/Qwen2.5-3B-Instruct`
|
|
|
|
| 193 |
* **Finetune**: **SFT (LoRA, PEFT)**
|
| 194 |
|
| 195 |
* LoRA: `r=16, alpha=32, dropout=0.1`
|
| 196 |
* Target: `q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj`
|
| 197 |
-
|
|
|
|
|
|
|
| 198 |
* **Epochs**: 1–2
|
| 199 |
-
|
| 200 |
-
* **
|
| 201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
* **Eval/Logging**: lightweight; save at step/epoch as needed
|
| 203 |
|
| 204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
|
| 206 |
---
|
| 207 |
|
|
@@ -224,12 +362,12 @@ Please review `LICENSE` here and the license for `Qwen/Qwen2.5-3B-Instruct` befo
|
|
| 224 |
|
| 225 |
## ✨ Changelog
|
| 226 |
|
| 227 |
-
|
| 228 |
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
|
| 233 |
-
|
| 234 |
|
| 235 |
-
|
|
|
|
| 1 |
+
|
| 2 |
+
---
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
tags:
|
| 6 |
+
- qwen
|
| 7 |
+
- qwen2.5
|
| 8 |
+
- 3b
|
| 9 |
+
- lora
|
| 10 |
+
- peft
|
| 11 |
+
- sft
|
| 12 |
+
- dialog
|
| 13 |
+
- intent-detection
|
| 14 |
+
- microplanning
|
| 15 |
+
- npc
|
| 16 |
+
library_name: transformers
|
| 17 |
+
license: other
|
| 18 |
+
pipeline_tag: text-generation
|
| 19 |
+
model-index:
|
| 20 |
+
- name: AndriLawrence/Qwen-3B-Intent-Microplan-v2
|
| 21 |
+
results: []
|
| 22 |
+
datasets:
|
| 23 |
+
- name: llm1_qwen_base_lora16_v6 (curated v2)
|
| 24 |
+
type: jsonl
|
| 25 |
+
args:
|
| 26 |
+
split: train/val 90/10
|
| 27 |
+
size_train: 4320
|
| 28 |
+
size_val: 480
|
| 29 |
+
size_total_source: ~6300
|
| 30 |
+
description: >-
|
| 31 |
+
English-only, diegetic NPC dataset; strict JSON outputs with {dialog,
|
| 32 |
+
intent, microplan}.
|
| 33 |
+
label_space:
|
| 34 |
+
- social_greeting
|
| 35 |
+
- acknowledge_touch
|
| 36 |
+
- acknowledge_compliment
|
| 37 |
+
- react_to_player_action
|
| 38 |
+
- invite_follow
|
| 39 |
+
- encourage_explain
|
| 40 |
+
- calm_reassure
|
| 41 |
+
- idle_initiative
|
| 42 |
+
- respect_distance
|
| 43 |
+
- initiate_hand_holding
|
| 44 |
+
- initiate_hug
|
| 45 |
+
- cuddle_sleep
|
| 46 |
+
- offer_item
|
| 47 |
+
- accept_item
|
| 48 |
+
- open_door
|
| 49 |
+
- inspect_object
|
| 50 |
+
- trigger_object
|
| 51 |
+
- small_talk_emotion
|
| 52 |
+
- end_conversation_politely
|
| 53 |
+
configs:
|
| 54 |
+
- task: text-generation
|
| 55 |
+
base_model: Qwen/Qwen2.5-3B-Instruct
|
| 56 |
+
adapters:
|
| 57 |
+
- type: lora
|
| 58 |
+
path: checkpoints/adapter_final
|
| 59 |
+
merged_variants:
|
| 60 |
+
- path: merged/sft-fp16
|
| 61 |
+
quantized:
|
| 62 |
+
- format: gguf
|
| 63 |
+
files:
|
| 64 |
+
- gguf/sft-q6_k.gguf
|
| 65 |
+
- gguf/sft-q4_k_m.gguf
|
| 66 |
+
---
|
| 67 |
|
| 68 |
# AndriLawrence/Qwen-3B-Intent-Microplan-v2
|
| 69 |
|
| 70 |
+
**English-only** finetune of **Qwen2.5-3B-Instruct** for **intent + microplan–driven NPC dialog**.
|
| 71 |
The model reads a structured **CONTEXT JSON** (environment, relationship, mood, signals) and produces:
|
| 72 |
|
| 73 |
+
* `intent` (one of 19 whitelisted labels)
|
| 74 |
+
* `microplan` (low-level action primitives)
|
| 75 |
+
* `dialog` as **strict JSON**
|
| 76 |
|
| 77 |
> **v2 = refinement of v1**: cleaned & rebalanced dataset, tighter JSON guardrails, and improved persona adherence. v2 is more stable (almost no JSON leaks), better label alignment, and more consistent diegetic tone.
|
| 78 |
|
|
|
|
| 80 |
|
| 81 |
## 🧩 Intended Use
|
| 82 |
|
| 83 |
+
* Real-time NPC/companion systems where **logic (intent/microplan)** and **surface (dialog)** are controllable.
|
| 84 |
+
* Fits a **two-stage pipeline**:
|
| 85 |
Model A (intent+microplan) → Model B (persona dialog), or single-shot for all three fields.
|
| 86 |
|
| 87 |
**Limitations**
|
| 88 |
+
|
| 89 |
+
* English-only.
|
| 90 |
|
| 91 |
---
|
| 92 |
|
| 93 |
## 📦 Assets
|
| 94 |
|
| 95 |
+
* **LoRA adapters (PEFT, SFT)** → `checkpoints/adapter_final`
|
| 96 |
+
* **Merged FP16** → `merged/sft-fp16`
|
| 97 |
+
* **GGUF quants (llama.cpp / llama-cpp-python)** → `gguf/sft-q6_k.gguf`, `gguf/sft-q4_k_m.gguf`
|
| 98 |
+
|
| 99 |
+
---
|
| 100 |
+
|
| 101 |
+
## 🎮 Rin JSON Brain – Recommended System Prompt
|
| 102 |
+
|
| 103 |
+
This is the system prompt used in the author’s VR NPC setup (Unity).
|
| 104 |
+
It makes the model act as **Rin**, a warm, casual in-world companion that always outputs one JSON object:
|
| 105 |
+
|
| 106 |
+
```text
|
| 107 |
+
SYSTEM
|
| 108 |
+
You are **LLM-1**, the social brain of a VR NPC named **Rin** (warm, gentle, supportive, casual).
|
| 109 |
+
You read one JSON event and must reply with **exactly one** JSON object. No extra text.
|
| 110 |
|
| 111 |
+
OUTPUT SCHEMA:
|
| 112 |
+
{
|
| 113 |
+
"dialog": [{ "speaker": "npc", "text": string }],
|
| 114 |
+
"intent": string,
|
| 115 |
+
"microplan": [string]
|
| 116 |
+
}
|
| 117 |
+
|
| 118 |
+
INTERNAL THINKING (silent, super short):
|
| 119 |
+
- In your head, ask: “What happened?” and summarize it in one very short line.
|
| 120 |
+
- Still in your head, pick the best intent and microplan.
|
| 121 |
+
- Think fast and efficiently; no long inner monologue.
|
| 122 |
+
- Do NOT show your thoughts or any <think> tags; only output the JSON.
|
| 123 |
+
|
| 124 |
+
RULES:
|
| 125 |
+
- English only, first person as Rin.
|
| 126 |
+
- Tone: relaxed, soft, a bit playful; never formal or corporate.
|
| 127 |
+
- Avoid helper clichés (“I’m here to help”, “How can I assist you”, “at your service”)
|
| 128 |
+
- Never repeat a full sentence you already said in MEMORY; rephrase instead.
|
| 129 |
+
- dialog: 1–2 short lines total (max 2 sentences), speak directly to the player, use room/time/objects if it feels natural.
|
| 130 |
+
|
| 131 |
+
ALLOWED_INTENTS:
|
| 132 |
+
- social_greeting
|
| 133 |
+
- acknowledge_touch
|
| 134 |
+
- acknowledge_compliment
|
| 135 |
+
- react_to_player_action
|
| 136 |
+
- invite_follow
|
| 137 |
+
- encourage_explain
|
| 138 |
+
- calm_reassure
|
| 139 |
+
- idle_initiative
|
| 140 |
+
- respect_distance
|
| 141 |
+
- initiate_hand_holding
|
| 142 |
+
- initiate_hug
|
| 143 |
+
- cuddle_sleep
|
| 144 |
+
- offer_item
|
| 145 |
+
- accept_item
|
| 146 |
+
- open_door
|
| 147 |
+
- inspect_object
|
| 148 |
+
- trigger_object
|
| 149 |
+
- small_talk_emotion
|
| 150 |
+
- end_conversation_politely
|
| 151 |
+
|
| 152 |
+
MICROPLAN (optional, 0–5 steps; or []):
|
| 153 |
+
- "Smile (0.6)"
|
| 154 |
+
- "Nod (0.5)"
|
| 155 |
+
- "Eye contact (1.2s)"
|
| 156 |
+
- "Step back (0.3m)"
|
| 157 |
+
- "Extend hand"
|
| 158 |
+
- "Hug (gentle, 2s)"
|
| 159 |
+
- "Offer blanket"
|
| 160 |
+
|
| 161 |
+
LIGHT ROUTING:
|
| 162 |
+
- event == "Player_Touches" → "acknowledge_touch".
|
| 163 |
+
- event == "Player_Action":
|
| 164 |
+
- looking/checking → "inspect_object"
|
| 165 |
+
- using/toggling/switching → "trigger_object"
|
| 166 |
+
- opening/closing door/panel → "open_door"
|
| 167 |
+
- Compliment words (nice / great / love / beautiful / cool) → usually "acknowledge_compliment".
|
| 168 |
+
- Close contact requests (hold hands / hug / cuddle / lie down) → matching close-intent.
|
| 169 |
+
- Very close without request (distance < 0.5m) → "respect_distance" (+ maybe "Step back (0.3m)").
|
| 170 |
+
- If nothing urgent → "idle_initiative" or "small_talk_emotion".
|
| 171 |
+
```
|
| 172 |
|
| 173 |
---
|
| 174 |
|
| 175 |
+
## 🔧 Recommended Inference Settings
|
| 176 |
+
|
| 177 |
+
These are the “sweet spot” sampling settings used in the Unity client (Ollama/llama.cpp-style).
|
| 178 |
+
They balance creativity with JSON stability for Rin:
|
| 179 |
+
|
| 180 |
+
```json
|
| 181 |
+
{
|
| 182 |
+
"temperature": 0.92,
|
| 183 |
+
"top_p": 0.90,
|
| 184 |
+
"top_k": 40,
|
| 185 |
+
"repetition_penalty": 1.05,
|
| 186 |
+
"repeat_last_n": 192,
|
| 187 |
+
"num_ctx": 4096,
|
| 188 |
+
"mirostat": 2,
|
| 189 |
+
"mirostat_tau": 2.18,
|
| 190 |
+
"mirostat_eta": 0.11,
|
| 191 |
+
"seed": 42, // or random per call
|
| 192 |
+
"max_tokens": 160 // enough for one JSON object
|
| 193 |
+
}
|
| 194 |
+
```
|
| 195 |
+
|
| 196 |
+
Unity-side extras used by the author:
|
| 197 |
+
|
| 198 |
+
* **Max Resample**: `2`
|
| 199 |
+
* **Resample Temp Step**: `0.1`
|
| 200 |
+
* **Memory**: last `10` dialog turns + `6` recent actions
|
| 201 |
+
|
| 202 |
+
You can safely lower `temperature` to ~0.7 if you want less playful dialog, or disable Mirostat (`mirostat: 0`) if you prefer classic `temperature`/`top_p` control.
|
| 203 |
|
| 204 |
---
|
| 205 |
|
| 206 |
## 🧠 Output Contract
|
| 207 |
|
| 208 |
**Single JSON object**:
|
| 209 |
+
|
| 210 |
```json
|
| 211 |
{
|
| 212 |
+
"dialog": [
|
| 213 |
+
{
|
| 214 |
+
"speaker": "npc",
|
| 215 |
+
"text": "Come on, this way; the room’s quiet and warm tonight."
|
| 216 |
+
}
|
| 217 |
+
],
|
| 218 |
"intent": "invite_follow",
|
| 219 |
+
"microplan": ["Smile (0.6)", "Extend hand"]
|
| 220 |
}
|
| 221 |
+
```
|
| 222 |
+
|
| 223 |
+
No extra prose, markdown, or `<think>` blocks are expected.
|
| 224 |
|
| 225 |
---
|
| 226 |
|
|
|
|
| 246 |
model = PeftModel.from_pretrained(model, ADAPTER)
|
| 247 |
|
| 248 |
messages = [
|
| 249 |
+
{
|
| 250 |
+
"role": "system",
|
| 251 |
+
"content": (
|
| 252 |
+
"You are LLM-1, the social brain of a VR NPC named Rin. "
|
| 253 |
+
"Use the Rin JSON contract and output exactly one JSON object with {dialog,intent,microplan}. "
|
| 254 |
+
"No extra text."
|
| 255 |
+
)
|
| 256 |
+
},
|
| 257 |
+
{
|
| 258 |
+
"role": "user",
|
| 259 |
+
"content": "CONTEXT: {...}" # your context JSON event
|
| 260 |
+
}
|
| 261 |
]
|
| 262 |
|
| 263 |
prompt = tok.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
|
|
|
| 267 |
**ids,
|
| 268 |
max_new_tokens=160,
|
| 269 |
do_sample=True,
|
| 270 |
+
temperature=0.9,
|
| 271 |
top_p=0.9,
|
| 272 |
+
top_k=40,
|
| 273 |
repetition_penalty=1.05,
|
| 274 |
eos_token_id=tok.eos_token_id
|
| 275 |
)
|
|
|
|
| 280 |
|
| 281 |
```python
|
| 282 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 283 |
+
|
| 284 |
MODEL = "AndriLawrence/Qwen-3B-Intent-Microplan-v2/merged/sft-fp16"
|
| 285 |
|
| 286 |
tok = AutoTokenizer.from_pretrained(MODEL, use_fast=True, trust_remote_code=True)
|
| 287 |
model = AutoModelForCausalLM.from_pretrained(
|
| 288 |
+
MODEL, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True
|
| 289 |
)
|
| 290 |
```
|
| 291 |
|
|
|
|
| 300 |
n_ctx=4096,
|
| 301 |
n_gpu_layers=35
|
| 302 |
)
|
| 303 |
+
|
| 304 |
resp = llm.create_chat_completion(messages=[
|
| 305 |
+
{
|
| 306 |
+
"role": "system",
|
| 307 |
+
"content": "You are LLM-1 (Rin). Output exactly one JSON object with {dialog,intent,microplan}."
|
| 308 |
+
},
|
| 309 |
+
{"role": "user", "content": "CONTEXT: {...}"}
|
| 310 |
])
|
| 311 |
print(resp["choices"][0]["message"]["content"])
|
| 312 |
```
|
|
|
|
| 316 |
## 🏗️ Training Summary (v2)
|
| 317 |
|
| 318 |
* **Base**: `Qwen/Qwen2.5-3B-Instruct`
|
| 319 |
+
|
| 320 |
* **Finetune**: **SFT (LoRA, PEFT)**
|
| 321 |
|
| 322 |
* LoRA: `r=16, alpha=32, dropout=0.1`
|
| 323 |
* Target: `q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj`
|
| 324 |
+
|
| 325 |
+
* **Batching**: `per_device_train_batch_size=1`, **grad_accum=16** (effective batch 16)
|
| 326 |
+
|
| 327 |
* **Epochs**: 1–2
|
| 328 |
+
|
| 329 |
+
* **LR**: `2e-5`, cosine scheduler, warmup 5%, weight_decay `0.01`, `max_grad_norm=1.0`
|
| 330 |
+
|
| 331 |
+
* **Seq length**: typical sample ≤640–768 tokens, `packing=False`, `completion_only_loss=True`
|
| 332 |
+
|
| 333 |
+
* **Stability**: FP16 (T4), SDPA attention, gradient checkpointing
|
| 334 |
+
|
| 335 |
* **Eval/Logging**: lightweight; save at step/epoch as needed
|
| 336 |
|
| 337 |
+
v2 also includes:
|
| 338 |
+
|
| 339 |
+
* marker normalization
|
| 340 |
+
* JSON schema validation
|
| 341 |
+
* intent whitelist checks
|
| 342 |
+
* length filtering for stable inference on consumer GPUs
|
| 343 |
|
| 344 |
---
|
| 345 |
|
|
|
|
| 362 |
|
| 363 |
## ✨ Changelog
|
| 364 |
|
| 365 |
+
**v2**
|
| 366 |
|
| 367 |
+
* English-only curated set, cleaned & rebalanced (90/10 split)
|
| 368 |
+
* Stronger JSON guardrails; fewer leaks; improved persona consistency
|
| 369 |
+
* Length filtering for stable inference/training on consumer GPUs
|
| 370 |
|
| 371 |
+
**v1**
|
| 372 |
|
| 373 |
+
* Initial SFT with looser distribution and softer JSON constraints; using RP merged model as base.
|