Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
<p align="center">
|
| 3 |
+
<picture>
|
| 4 |
+
<source media="(prefers-color-scheme: dark)" srcset="https://github.com/Tencent/AngelSlim/blob/main/docs/source/assets/logos/angelslim_logo_light.png?raw=true">
|
| 5 |
+
<img alt="AngelSlim" src="https://github.com/Tencent/AngelSlim/blob/main/docs/source/assets/logos/angelslim_logo.png?raw=true" width=55%>
|
| 6 |
+
</picture>
|
| 7 |
+
</p>
|
| 8 |
+
|
| 9 |
+
<h3 align="center">
|
| 10 |
+
Dedicated to building a more intuitive, comprehensive, and efficient LLMs compression toolkit.
|
| 11 |
+
</h3>
|
| 12 |
+
|
| 13 |
+
<p align="center">
|
| 14 |
+
📖 <a href="https://angelslim.readthedocs.io/">Documentation</a>   |   🤗 <a href="https://huggingface.co/AngelSlim">Hugging Face</a>   |   🤖 <a href="https://modelscope.cn/organization/AngelSlim">ModelScope</a>   |   💬 <a href="./docs/source/assets/angel_slim_wechat.png">WeChat</a>
|
| 15 |
+
<br>
|
| 16 |
+
</p>
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
## Table of Contents
|
| 20 |
+
|
| 21 |
+
- [Latest Updates](#latest-updates)
|
| 22 |
+
- [Key Features](#key-features)
|
| 23 |
+
- [Supported Models](#supported-models)
|
| 24 |
+
- [How to Use](#how-to-use)
|
| 25 |
+
- [Install AngelSlim](#install-angelslim)
|
| 26 |
+
- [Quick Start](#quick-start)
|
| 27 |
+
- [deployment & Evaluation](#deployment)
|
| 28 |
+
- [Benchmark](#benchmark)
|
| 29 |
+
- [License](#license)
|
| 30 |
+
- [Citation](#citation)
|
| 31 |
+
- [Technical Discussion](#technical-discussion)
|
| 32 |
+
|
| 33 |
+
## 📣Latest Updates
|
| 34 |
+
|
| 35 |
+
- [25/07/04] We now support quantization for Hunyuan/Qwen2.5/Qwen3/DeepSeek-R1-Distill-Qwen and other models, including INT8/FP8/INT4 algorithms.
|
| 36 |
+
We also opensource Qwen3-8B`s Eagle3 model weight.
|
| 37 |
+
|
| 38 |
+
Coming soon:
|
| 39 |
+
|
| 40 |
+
- [ ] Support W4A8 quantization for DeepSeek-R1.
|
| 41 |
+
- [ ] Support quantization for multimodal models like Qwen-VL.
|
| 42 |
+
- [ ] Release of new algorithm for speculative sampling.
|
| 43 |
+
|
| 44 |
+
## 🌟Key Features
|
| 45 |
+
|
| 46 |
+
- **Highly Integrated**: This toolkit integrates mainstream compression algorithms into a unified framework, offering developers one-click access with exceptional ease of use.
|
| 47 |
+
- **Continuous Innovation**: Beyond integrating widely-used industry algorithms, we are continuously researching better compression algorithms, which will be gradually open-sourced in the future.
|
| 48 |
+
- **Performance-Driven**: We continuously optimize end-to-end performance in model compression workflows and algorithm deployment, such as enabling quantization of models like Qwen3-235B and DeepSeek-R1 on a single GPU.
|
| 49 |
+
|
| 50 |
+
## 💼Supported Models
|
| 51 |
+
|
| 52 |
+
### Quantization
|
| 53 |
+
Currently supports the following LLMs, including Hunyuan-Dense, Hunyuan-MoE, Qwen3-Dense, Qwen3-MoE, Qwen2.5, DeepSeek-R1 distilled Qwen models, and QwQ::
|
| 54 |
+
|
| 55 |
+
| Model | FP8-Dynamic | FP8-Static | INT8-Dynamic | INT4-GPTQ | INT4-AWQ |
|
| 56 |
+
| --------------------------------------------------------------------------------------------------------------------------- | ----------- | ---------- | ------------ | --------- | -------- |
|
| 57 |
+
| [Hunyuan-Dense](https://huggingface.co/tencent/Hunyuan-7B-Instruct) | ✅ | ✅ | ✅ | ✅ | ✅ |
|
| 58 |
+
| [Hunyuan-MoE](https://huggingface.co/collections/tencent/hunyuan-a13b-685ec38e5b46321e3ea7c4be) | ✅ | ✅ | ✅ | ✅ | ✅ |
|
| 59 |
+
| [Qwen3-Dense](https://huggingface.co/collections/AngelSlim/qwen3-quant-68652e26da31740739d154f8) | ✅ | ✅ | ✅ | ✅ | ✅ |
|
| 60 |
+
| [Qwen3-MoE](https://huggingface.co/collections/AngelSlim/qwen3-quant-68652e26da31740739d154f8) | ✅ | ✅ | ✅ | ✅ | ✅ |
|
| 61 |
+
| [Qwen2.5](https://huggingface.co/collections/AngelSlim/qwen2-25-quant-68652d6cbdf5c0d4b1c4499a) | ✅ | ✅ | ✅ | ✅ | ✅ |
|
| 62 |
+
| [DeepSeek-R1-Distill-Qwen](https://huggingface.co/collections/AngelSlim/deepseek-r1-distill-quant-68652f16a9c206b030b05f7f) | ✅ | ✅ | ✅ | ✅ | ✅ |
|
| 63 |
+
| [QwQ](https://huggingface.co/collections/AngelSlim/qwen3-quant-68652e26da31740739d154f8) | ✅ | ✅ | ✅ | ✅ | ✅ |
|
| 64 |
+
|
| 65 |
+
### Speculative Decoding
|
| 66 |
+
The Eagle3 weights for the Qwen3-8B model are now available, with Eagle3 weights for other models in the Qwen3 series to be released soon.
|
| 67 |
+
|
| 68 |
+
| Model | Eagle3 |
|
| 69 |
+
| ----------| ----------------- |
|
| 70 |
+
| [Qwen3-8B](https://huggingface.co/AngelSlim/Qwen3-8B_eagle3/tree/main) | ✅ |
|
| 71 |
+
| Qwen3-14B | coming soon |
|
| 72 |
+
| Qwen3-32B | coming soon |
|
| 73 |
+
|
| 74 |
+
## 🛎️How to Use
|
| 75 |
+
|
| 76 |
+
### Install AngelSlim
|
| 77 |
+
|
| 78 |
+
We recommend using `pip` to install the latest stable version of `AngelSlim`:
|
| 79 |
+
|
| 80 |
+
```shell
|
| 81 |
+
pip install angelslim
|
| 82 |
+
```
|
| 83 |
+
|
| 84 |
+
Alternatively, you can clone the repository and install from source in editable mode:
|
| 85 |
+
|
| 86 |
+
```shell
|
| 87 |
+
cd AngelSlim && python setup.py install
|
| 88 |
+
```
|
| 89 |
+
|
| 90 |
+
For more detailed installation instructions, please refer to the [Installation Documentation](https://angelslim.readthedocs.io/zh-cn/latest/getting_started/installation.html).
|
| 91 |
+
|
| 92 |
+
### Quick Start
|
| 93 |
+
|
| 94 |
+
After installing `AngelSlim`, you can quickly start by running the following script to perform static `FP8` quantization on the `Qwen3-1.7B` model:
|
| 95 |
+
|
| 96 |
+
* One-click Start
|
| 97 |
+
|
| 98 |
+
```shell
|
| 99 |
+
python3 tools/run.py -c configs/qwen3/fp8_static/qwen3-1_7b_fp8_static.yaml
|
| 100 |
+
```
|
| 101 |
+
|
| 102 |
+
This example will load the HuggingFace model and perform activation value calibration using the `dataset` specified in the config file, saving the quantized model weights.
|
| 103 |
+
|
| 104 |
+
* Code-based Start
|
| 105 |
+
|
| 106 |
+
To perform dynamic `FP8` quantization on `Qwen3-1.7B`:
|
| 107 |
+
|
| 108 |
+
```python
|
| 109 |
+
from angelslim.engine import Engine
|
| 110 |
+
|
| 111 |
+
slim_engine = Engine()
|
| 112 |
+
# Prepare model
|
| 113 |
+
slim_engine.prepare_model(model_name="Qwen", model_path="Qwen/Qwen3-1.7B",)
|
| 114 |
+
# Initialize compressor
|
| 115 |
+
slim_engine.prepare_compressor("PTQ", default_method="fp8_dynamic")
|
| 116 |
+
# Compress model
|
| 117 |
+
slim_engine.run()
|
| 118 |
+
# Save compressed model
|
| 119 |
+
slim_engine.save("./output")
|
| 120 |
+
```
|
| 121 |
+
|
| 122 |
+
For more details, please refer to the [Quick Start Documentation](https://angelslim.readthedocs.io/zh-cn/latest/getting_started/quickstrat.html).
|
| 123 |
+
|
| 124 |
+
### 🖥️ Deployment and Testing
|
| 125 |
+
|
| 126 |
+
#### 1. API Service Deployment
|
| 127 |
+
|
| 128 |
+
After specifying the quantized model path `MODEL_PATH`, you can deploy an OpenAI-compatible API service using the following LLMs inference frameworks:
|
| 129 |
+
|
| 130 |
+
**vLLM**
|
| 131 |
+
|
| 132 |
+
Use the following script to launch a [vLLM](https://github.com/vllm-project/vllm) server, recommended version `vllm>=0.8.5.post1`. For MOE INT8 quantized models, vllm>=0.9.0 is required.
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
```shell
|
| 136 |
+
bash deploy/run_vllm.sh $MODEL_PATH
|
| 137 |
+
```
|
| 138 |
+
|
| 139 |
+
**SGLang**
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
Use the following script to launch a [SGLang](https://github.com/sgl-project/sglang) server, recommended version `sglang>=0.4.6.post1`.
|
| 143 |
+
|
| 144 |
+
```shell
|
| 145 |
+
bash deploy/run_sglang.sh $MODEL_PATH
|
| 146 |
+
```
|
| 147 |
+
|
| 148 |
+
#### 2. Service Invocation
|
| 149 |
+
|
| 150 |
+
Invoke requests via [OpenAI's API format](https://platform.openai.com/docs/api-reference/introduction):
|
| 151 |
+
|
| 152 |
+
```shell
|
| 153 |
+
bash deploy/openai.sh $MODEL_PATH
|
| 154 |
+
```
|
| 155 |
+
|
| 156 |
+
#### 3. Performance Evaluation
|
| 157 |
+
|
| 158 |
+
Evaluate the performance of quantized model using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness), recommended version`lm-eval>=0.4.8`:
|
| 159 |
+
|
| 160 |
+
```shell
|
| 161 |
+
bash deploy/lm_eval.sh $MODEL_PATH
|
| 162 |
+
```
|
| 163 |
+
|
| 164 |
+
For more detaileds, please refer to the [Deployment Documentation](https://angelslim.readthedocs.io/zh-cn/latest/deployment/deploy.html).
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
## 📈 Benchmark
|
| 168 |
+
|
| 169 |
+
### Quantization
|
| 170 |
+
|
| 171 |
+
The performance test results for selected models are shown below. For the complete benchmark, refer to the [Benchmark documentation](https://angelslim.readthedocs.io/zh-cn/latest/performance/quantization/benchmarks.html)
|
| 172 |
+
|
| 173 |
+
#### Hunyuan Series Models
|
| 174 |
+
|
| 175 |
+
Benchmark results for the `Hunyuan-A13B-Instruct` model with `FP8` and `INT4-GPTQ` quantization algorithms on datasets including `AIME 2024`, `GSM8K`, `BBH`, and `DROP`:
|
| 176 |
+
|
| 177 |
+
| Bench | Hunyuan-A13B-Instruct | Hunyuan-A13B-Instruct-FP8 | Hunyuan-A13B-Instruct-Int4-GPTQ |
|
| 178 |
+
|:---------:|:---------------------:|:-------------------------:|:-------------------------------:|
|
| 179 |
+
| AIME 2024 | 87.3 | 86.7 | 86.7 |
|
| 180 |
+
| GSM8K | 94.39 | 94.01 | 94.24 |
|
| 181 |
+
| BBH | 89.1 | 88.34 | 87.91 |
|
| 182 |
+
| DROP | 91.1 | 91.1 | 91.05 |
|
| 183 |
+
|
| 184 |
+
#### Qwen3 Series Models
|
| 185 |
+
|
| 186 |
+
Benchmark results for Qwen3 series models with `FP8-Static`, `FP8-Dynamic`, `INT4-GPTQ`, and `INT4-AWQ` quantization algorithms on datasets including `CEVAL`, `MMLU`, `GSM8K`, and `HUMANEVAL`:
|
| 187 |
+
|
| 188 |
+
<table>
|
| 189 |
+
<thead>
|
| 190 |
+
<tr><th>Model</th><th>Quantization</th><th>CEVAL</th><th>MMLU</th><th>GSM8K</th><th>HUMANEVAL</th></tr>
|
| 191 |
+
</thead>
|
| 192 |
+
<tbody>
|
| 193 |
+
<tr><td rowspan="4">Qwen3-0.6B</td><td>BF16</td><td>45.84</td><td>47.21</td><td>42.99</td><td>19.51</td></tr>
|
| 194 |
+
<tr><td>FP8-Static</td><td>45.99</td><td>46.87</td><td>38.06</td><td>18.90</td></tr>
|
| 195 |
+
<tr><td>FP8-Dynamic</td><td>45.99</td><td>46.93</td><td>38.29</td><td>20.73</td></tr>
|
| 196 |
+
<tr><td>INT8-Dynamic</td><td>45.17</td><td>46.95</td><td>41.17</td><td>21.34</td></tr>
|
| 197 |
+
<tr><td rowspan="6">Qwen3-8B</td><td>BF16</td><td>79.27</td><td>74.78</td><td>87.79</td><td>63.41</td></tr>
|
| 198 |
+
<tr><td>FP8-Static</td><td>78.23</td><td>74.79</td><td>86.96</td><td>62.20</td></tr>
|
| 199 |
+
<tr><td>FP8-Dynamic</td><td>78.45</td><td>74.75</td><td>87.64</td><td>62.80</td></tr>
|
| 200 |
+
<tr><td>INT8-Dynamic</td><td>78.01</td><td>74.84</td><td>86.96</td><td>67.07</td></tr>
|
| 201 |
+
<tr><td>INT4-GPTQ</td><td>77.19</td><td>73.26</td><td>86.43</td><td>62.20</td></tr>
|
| 202 |
+
<tr><td>INT4-AWQ</td><td>76.15</td><td>73.59</td><td>86.96</td><td>63.41</td></tr>
|
| 203 |
+
<tr><td rowspan="6">Qwen3-14B</td><td>BF16</td><td>83.06</td><td>78.90</td><td>88.40</td><td>55.49</td></tr>
|
| 204 |
+
<tr><td>FP8-Static</td><td>82.62</td><td>78.57</td><td>89.46</td><td>57.32</td></tr>
|
| 205 |
+
<tr><td>FP8-Dynamic</td><td>82.24</td><td>78.92</td><td>88.32</td><td>52.44</td></tr>
|
| 206 |
+
<tr><td>INT8-Dynamic</td><td>81.87</td><td>78.13</td><td>86.28</td><td>56.10</td></tr>
|
| 207 |
+
<tr><td>INT4-GPTQ</td><td>81.05</td><td>78.02</td><td>87.34</td><td>57.93</td></tr>
|
| 208 |
+
<tr><td>INT4-AWQ</td><td>82.02</td><td>77.68</td><td>84.23</td><td>61.59</td></tr>
|
| 209 |
+
<tr><td rowspan="5">Qwen3-32B</td><td>BF16</td><td>86.55</td><td>82.00</td><td>74.53</td><td>37.80</td></tr>
|
| 210 |
+
<tr><td>FP8-Static</td><td>86.92</td><td>81.78</td><td>70.20</td><td>39.63</td></tr>
|
| 211 |
+
<tr><td>FP8-Dynamic</td><td>86.55</td><td>81.89</td><td>70.43</td><td>38.41</td></tr>
|
| 212 |
+
<tr><td>INT4-GPTQ</td><td>86.18</td><td>81.01</td><td>-</td><td>43.29</td></tr>
|
| 213 |
+
<tr><td>INT4-AWQ</td><td>86.18</td><td>81.54</td><td>-</td><td>36.59</td></tr>
|
| 214 |
+
<tr><td rowspan="4">Qwen3-30B-A3B</td><td>BF16</td><td>83.66</td><td>79.36</td><td>89.99</td><td>31.71</td></tr>
|
| 215 |
+
<tr><td>FP8-Static</td><td>83.95</td><td>79.47</td><td>89.01</td><td>31.10</td></tr>
|
| 216 |
+
<tr><td>FP8-Dynamic</td><td>84.10</td><td>79.40</td><td>89.16</td><td>32.93</td></tr>
|
| 217 |
+
<tr><td>INT8-Dynamic</td><td>83.36</td><td>79.48</td><td>89.16</td><td>34.15</td></tr>
|
| 218 |
+
<tr><td rowspan="4">Qwen3-235B-A22B</td><td>BF16</td><td>89.60</td><td>86.28</td><td>85.29</td><td>27.44</td></tr>
|
| 219 |
+
<tr><td>FP8-Static</td><td>89.67</td><td>86.19</td><td>86.96</td><td>27.44</td></tr>
|
| 220 |
+
<tr><td>FP8-Dynamic</td><td>89.67</td><td>86.18</td><td>85.22</td><td>28.05</td></tr>
|
| 221 |
+
<tr><td>INT8-Dynamic</td><td>88.93</td><td>86.20</td><td>86.20</td><td>23.78</td></tr>
|
| 222 |
+
<tr><td rowspan="5">QwQ-32B</td><td>BF16</td><td>85.74</td><td>82.03</td><td>73.31</td><td>42.68</td></tr>
|
| 223 |
+
<tr><td>FP8-Static</td><td>85.44</td><td>81.91</td><td>75.36</td><td>42.68</td></tr>
|
| 224 |
+
<tr><td>FP8-Dynamic</td><td>85.07</td><td>81.93</td><td>75.66</td><td>42.07</td></tr>
|
| 225 |
+
<tr><td>INT4-GPTQ</td><td>84.03</td><td>81.26</td><td>68.23</td><td>45.73</td></tr>
|
| 226 |
+
<tr><td>INT4-AWQ</td><td>83.58</td><td>81.01</td><td>68.69</td><td>43.29</td></tr>
|
| 227 |
+
</tbody>
|
| 228 |
+
</table>
|
| 229 |
+
|
| 230 |
+
#### Other Models
|
| 231 |
+
|
| 232 |
+
Benchmark results for other models with `FP8-Static`, `FP8-Dynamic`, `INT4-GPTQ`, and `INT4-AWQ` quantization algorithms on datasets including `CEVAL`, `MMLU` and `GSM8K`:
|
| 233 |
+
|
| 234 |
+
<table>
|
| 235 |
+
<thead>
|
| 236 |
+
<tr><th>Model</th><th>Quantization</th><th>CEVAL</th><th>MMLU</th><th>GSM8K</th></tr>
|
| 237 |
+
</thead>
|
| 238 |
+
<tbody>
|
| 239 |
+
<tr><td rowspan="3">Qwen2.5-1.5B-Instruct</td><td>BF16</td><td>67.01</td><td>60.05</td><td>54.28</td></tr>
|
| 240 |
+
<tr><td>FP8-Static</td><td>66.27</td><td>60.23</td><td>-</td></tr>
|
| 241 |
+
<tr><td>FP8-Dynamic</td><td>66.79</td><td>60.08</td><td>51.71</td></tr>
|
| 242 |
+
<tr><td rowspan="5">Qwen2.5-7B-Instruct</td><td>BF16</td><td>81.20</td><td>74.55</td><td>79.98</td></tr>
|
| 243 |
+
<tr><td>FP8-Static</td><td>81.13</td><td>74.03</td><td>79.30</td></tr>
|
| 244 |
+
<tr><td>FP8-Dynamic</td><td>80.31</td><td>74.07</td><td>79.00</td></tr>
|
| 245 |
+
<tr><td>INT4-GPTQ</td><td>79.05</td><td>73.05</td><td>74.75</td></tr>
|
| 246 |
+
<tr><td>INT4-AWQ</td><td>79.35</td><td>73.22</td><td>79.38</td></tr>
|
| 247 |
+
<tr><td rowspan="5">Qwen2.5-32B-Instruct</td><td>BF16</td><td>87.30</td><td>83.21</td><td>81.73</td></tr>
|
| 248 |
+
<tr><td>FP8-Static</td><td>87.59</td><td>83.08</td><td>81.58</td></tr>
|
| 249 |
+
<tr><td>FP8-Dynamic</td><td>87.30</td><td>83.04</td><td>81.58</td></tr>
|
| 250 |
+
<tr><td>INT4-GPTQ</td><td>86.70</td><td>82.45</td><td>82.03</td></tr>
|
| 251 |
+
<tr><td>INT4-AWQ</td><td>87.00</td><td>82.64</td><td>-</td></tr>
|
| 252 |
+
<tr><td rowspan="5">DeepSeek-R1-Distill-Qwen-7B</td><td>BF16</td><td>53.49</td><td>53.80</td><td>75.74</td></tr>
|
| 253 |
+
<tr><td>FP8-Static</td><td>53.57</td><td>54.17</td><td>76.19</td></tr>
|
| 254 |
+
<tr><td>FP8-Dynamic</td><td>52.97</td><td>54.13</td><td>74.15</td></tr>
|
| 255 |
+
<tr><td>INT4-GPTQ</td><td>51.86</td><td>52.44</td><td>75.89</td></tr>
|
| 256 |
+
<tr><td>INT4-AWQ</td><td>53.49</td><td>53.70</td><td>-</td></tr>
|
| 257 |
+
<tr><td rowspan="5">DeepSeek-R1-Distill-Qwen-14B</td><td>BF16</td><td>77.71</td><td>74.28</td><td>85.67</td></tr>
|
| 258 |
+
<tr><td>FP8-Static</td><td>77.56</td><td>74.66</td><td>86.73</td></tr>
|
| 259 |
+
<tr><td>FP8-Dynamic</td><td>76.82</td><td>74.63</td><td>87.11</td></tr>
|
| 260 |
+
<tr><td>INT4-GPTQ</td><td>74.29</td><td>72.37</td><td>84.61</td></tr>
|
| 261 |
+
<tr><td>INT4-AWQ</td><td>74.81</td><td>73.00</td><td>86.05</td></tr>
|
| 262 |
+
<tr><td rowspan="5">DeepSeek-R1-Distill-Qwen-32B</td><td>BF16</td><td>84.18</td><td>80.89</td><td>87.41</td></tr>
|
| 263 |
+
<tr><td>FP8-Static</td><td>83.43</td><td>80.90</td><td>87.57</td></tr>
|
| 264 |
+
<tr><td>FP8-Dynamic</td><td>83.73</td><td>81.10</td><td>86.43</td></tr>
|
| 265 |
+
<tr><td>INT4-GPTQ</td><td>84.10</td><td>79.80</td><td>86.73</td></tr>
|
| 266 |
+
<tr><td>INT4-AWQ</td><td>82.84</td><td>80.15</td><td>87.19</td></tr>
|
| 267 |
+
</tbody>
|
| 268 |
+
</table>
|
| 269 |
+
|
| 270 |
+
### Speculative Decoding
|
| 271 |
+
Benchmark results for Qwen3 series models with `Eagle3` speculative decoding algorithm on datasets including `MT-bench`, `HunmanEval`, `GSM8K`, and `Alpaca`:
|
| 272 |
+
|
| 273 |
+
#### Qwen3-8B
|
| 274 |
+
|
| 275 |
+
<table border="0">
|
| 276 |
+
<thead>
|
| 277 |
+
<tr><th rowspan="3">Temperature</th><th rowspan="3">Method</th><th colspan="8">Datasets</th></tr>
|
| 278 |
+
<tr><th colspan="2">MT-bench</th><th colspan="2">HumanEval</th><th colspan="2">GSM8K</th><th colspan="2">Alpaca</th></tr>
|
| 279 |
+
<tr><th>Speedup</th><th>Accept length</th><th>Speedup</th><th>Accept length</th><th>Speedup</th><th>Accept length</th><th>Speedup</th><th>Accept length</th></tr>
|
| 280 |
+
</thead>
|
| 281 |
+
<tbody>
|
| 282 |
+
<tr><td>T=0</td><td>Eagle3</td><td>2.63x</td><td>3.65</td><td>2.76x</td><td>3.85</td><td>2.82x</td><td>3.90</td><td>2.62x</td><td>3.48</td></tr>
|
| 283 |
+
<tr><td>T=1</td><td>Eagle3</td><td>1.98x</td><td>2.75</td><td>2.25x</td><td>3.11</td><td>2.31x</td><td>3.15</td><td>2.10x</td><td>2.76</td></tr>
|
| 284 |
+
</tbody>
|
| 285 |
+
</table>
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
## 📝 Model License
|
| 289 |
+
|
| 290 |
+
The code for this project is open-sourced under the [License for AngelSlim](License_AngelSlim_model_and_dataset.txt).
|
| 291 |
+
|
| 292 |
+
## 🔗 Citation
|
| 293 |
+
|
| 294 |
+
```
|
| 295 |
+
@software{AngelSlim2025,
|
| 296 |
+
title={{AngelSlim}},
|
| 297 |
+
author={Tencent AngelSlim Project Contributors},
|
| 298 |
+
year={2025},
|
| 299 |
+
month={6},
|
| 300 |
+
url={https://github.com/Tencent/AngelSlim},
|
| 301 |
+
}
|
| 302 |
+
```
|
| 303 |
+
|
| 304 |
+
## 💬 Technical Discussion
|
| 305 |
+
|
| 306 |
+
* AngelSlim is continuously iterating and new features will be released soon. If you have any questions or suggestions, please open an issue on GitHub or join our [WeChat technical discussion group](https://github.com/Tencent/AngelSlim/blob/main/docs/source/assets/angel_slim_wechat.png?raw=true).
|