AnkitSatpute's picture
Update README.md
936f079 verified
---
library_name: transformers
license: mit
datasets:
- AnkitSatpute/zbMath_allft
language:
- en
base_model:
- meta-llama/Llama-3.1-8B
pipeline_tag: text-classification
---
# Model Card for Model ID
The model is trained to generate document embeddings for math research papers and use the embeddings to find similar ranked documents.
## Model Details
LLaMa model that is trained with contrastive learning for sequence classification.
## How to use for generating embeddings
from transformers import AutoTokenizer, AutoModel
import torch
sentences = ["Hello Who are you?", "I am fine thank you"]
tokenizer = AutoTokenizer.from_pretrained('AnkitSatpute/Llama-3.1-ReRank-AllFTbtAbstr')
model = AutoModel.from_pretrained('AnkitSatpute/Llama-3.1-ReRank-AllFTbtAbstr')
model.eval()
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = model_output[0][:, 0]
sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
print("Sentence embeddings:", sentence_embeddings)