Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,142 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: cc0-1.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc0-1.0
|
| 3 |
+
language:
|
| 4 |
+
- fi
|
| 5 |
+
base_model:
|
| 6 |
+
- TurkuNLP/bert-base-finnish-uncased-v1
|
| 7 |
+
tags:
|
| 8 |
+
- difficulty
|
| 9 |
+
- cefr
|
| 10 |
+
- regression
|
| 11 |
+
- bert
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
# Text difficulty regression model
|
| 15 |
+
|
| 16 |
+
Regression model which predicts difficulty score for an input text. Predicted scores can be mapped to CEFR levels.
|
| 17 |
+
|
| 18 |
+
## Model Details
|
| 19 |
+
|
| 20 |
+
Frozen BERT-large layers with a regressor on top. Trained on a mix of manually annotated datasets (more details on data will follow) and data translated from Russian into Finnish.
|
| 21 |
+
|
| 22 |
+
## How to Get Started with the Model
|
| 23 |
+
|
| 24 |
+
Use the code below to get started with the model.
|
| 25 |
+
|
| 26 |
+
```
|
| 27 |
+
class CustomModel(BertPreTrainedModel):
|
| 28 |
+
def __init__(self, config, load_path=None, use_auth_token: str = None,):
|
| 29 |
+
super().__init__(config)
|
| 30 |
+
self.bert = BertModel(config)
|
| 31 |
+
self.pre_classifier = nn.Linear(config.hidden_size, 128)
|
| 32 |
+
self.dropout = nn.Dropout(0.2)
|
| 33 |
+
self.classifier = nn.Linear(128, 1)
|
| 34 |
+
self.activation = nn.ReLU()
|
| 35 |
+
|
| 36 |
+
nn.init.kaiming_uniform_(self.pre_classifier.weight, nonlinearity='relu')
|
| 37 |
+
nn.init.kaiming_uniform_(self.classifier.weight, nonlinearity='relu')
|
| 38 |
+
if self.pre_classifier.bias is not None:
|
| 39 |
+
nn.init.constant_(self.pre_classifier.bias, 0)
|
| 40 |
+
if self.classifier.bias is not None:
|
| 41 |
+
nn.init.constant_(self.classifier.bias, 0)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def forward(
|
| 45 |
+
self,
|
| 46 |
+
input_ids,
|
| 47 |
+
labels=None,
|
| 48 |
+
attention_mask=None,
|
| 49 |
+
token_type_ids=None,
|
| 50 |
+
position_ids=None,
|
| 51 |
+
):
|
| 52 |
+
outputs = self.bert(
|
| 53 |
+
input_ids,
|
| 54 |
+
attention_mask=attention_mask,
|
| 55 |
+
token_type_ids=token_type_ids,
|
| 56 |
+
position_ids=position_ids,
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
pooled_output = outputs.pooler_output
|
| 60 |
+
pooled_output = self.pre_classifier(pooled_output)
|
| 61 |
+
pooled_output = self.activation(pooled_output)
|
| 62 |
+
pooled_output = self.dropout(pooled_output)
|
| 63 |
+
logits = self.classifier(pooled_output)
|
| 64 |
+
|
| 65 |
+
if labels is not None:
|
| 66 |
+
loss_fn = nn.MSELoss()
|
| 67 |
+
loss = loss_fn(logits.view(-1), labels.view(-1))
|
| 68 |
+
return loss, logits
|
| 69 |
+
else:
|
| 70 |
+
return None, logits
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
# Inference
|
| 74 |
+
from safetensors.torch import load_file
|
| 75 |
+
# Code to load custom fine-tuned model'
|
| 76 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
| 77 |
+
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
|
| 78 |
+
config.num_labels = 1
|
| 79 |
+
|
| 80 |
+
# Load your custom model
|
| 81 |
+
model = CustomModel(config)
|
| 82 |
+
state_dict = load_file(f'{model_path}/model.safetensors')
|
| 83 |
+
model.load_state_dict(state_dict)
|
| 84 |
+
model.eval()
|
| 85 |
+
|
| 86 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
| 87 |
+
inputs = {key: value.to(device) for key, value in inputs.items()}
|
| 88 |
+
|
| 89 |
+
with torch.no_grad():
|
| 90 |
+
_, logits = model(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"])
|
| 91 |
+
```
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
To map to CEFR, use:
|
| 95 |
+
```
|
| 96 |
+
reg2cl2 = {
|
| 97 |
+
"0.0": "A1", "1.0": "A1", "1.5": "A1-A2", "2.0": "A2",
|
| 98 |
+
"2.5": "A2-B1", "3.0": "B1", "3.5": "B1-B2", "4.0": "B2",
|
| 99 |
+
"4.5": "B2-C1", "5.0": "C1", "5.5": "C1-C2", "6.0": "C2"
|
| 100 |
+
}
|
| 101 |
+
|
| 102 |
+
print("Predicted output (logits):", logits.item(), reg2cl2[str(float(round(logits.item())))])
|
| 103 |
+
```
|
| 104 |
+
|
| 105 |
+
## Training Details
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
#### Training Hyperparameters
|
| 109 |
+
|
| 110 |
+
+ num_warmup_steps = int(0.1 * num_training_steps)
|
| 111 |
+
+ num_train_epochs: 24.0
|
| 112 |
+
+ batch_size: 16
|
| 113 |
+
+ weight_decay: 0.01
|
| 114 |
+
+ adam_beta1: 0.9
|
| 115 |
+
+ adam_beta2: 0.99
|
| 116 |
+
+ adam_epsilon: 1e-8
|
| 117 |
+
+ max_grad_norm: 1.0
|
| 118 |
+
+ fp16: True
|
| 119 |
+
+ early_stopping: True
|
| 120 |
+
|
| 121 |
+
#### Learning rates
|
| 122 |
+
|
| 123 |
+
```
|
| 124 |
+
# Define separate learning rates
|
| 125 |
+
lr_bert = 2e-5 # Learning rate for BERT layers
|
| 126 |
+
lr_classifier = 1e-3 # Learning rate for the classifier
|
| 127 |
+
|
| 128 |
+
optimizer = torch.optim.AdamW([
|
| 129 |
+
{"params": model.bert.parameters(), "lr": lr_bert}, # BERT layers
|
| 130 |
+
{"params": model.classifier.parameters(), "lr": lr_classifier},
|
| 131 |
+
{"params": model.pre_classifier.parameters(), "lr": lr_classifier},
|
| 132 |
+
])
|
| 133 |
+
```
|
| 134 |
+
|
| 135 |
+
## Evaluation on test set
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+

|
| 139 |
+
|
| 140 |
+
## Citation
|
| 141 |
+
|
| 142 |
+
Please refer to this repo when using the model.
|