Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# English to Chinese Translation (Quantized Model)
|
| 2 |
+
|
| 3 |
+
This repository contains a **quantized English-to-Chinese translation model** fine-tuned on the ['wlhb/Transaltion-Chinese-2-English'] dataset and optimized using **dynamic quantization** for efficient CPU inference.
|
| 4 |
+
|
| 5 |
+
## π§ Model Details
|
| 6 |
+
|
| 7 |
+
- **Base model**: Helsinki-NLP/opus-mt-en-zh
|
| 8 |
+
- **Dataset**: ['wlhb/Transaltion-Chinese-2-English']
|
| 9 |
+
- **Training platform**: Kaggle (CUDA GPU)
|
| 10 |
+
- **Fine-tuned**: On English-Chinese pairs from the Hugging Face dataset
|
| 11 |
+
- **Quantization**: PyTorch Dynamic Quantization (`torch.quantization.quantize_dynamic`)
|
| 12 |
+
- **Tokenizer**: Saved alongside the model
|
| 13 |
+
|
| 14 |
+
## π Folder Structure
|
| 15 |
+
|
| 16 |
+
quantized_model/
|
| 17 |
+
βββ config.json
|
| 18 |
+
βββ pytorch_model.bin
|
| 19 |
+
βββ tokenizer_config.json
|
| 20 |
+
βββ tokenizer.json
|
| 21 |
+
βββ vocab.json / merges.txt
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
---
|
| 25 |
+
|
| 26 |
+
## π Usage
|
| 27 |
+
|
| 28 |
+
### πΉ 1. Load Quantized Model for Inference
|
| 29 |
+
|
| 30 |
+
```python
|
| 31 |
+
import torch
|
| 32 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
| 33 |
+
|
| 34 |
+
# Load tokenizer
|
| 35 |
+
tokenizer = AutoTokenizer.from_pretrained("./quantized_model")
|
| 36 |
+
|
| 37 |
+
# Load quantized model
|
| 38 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("./quantized_model")
|
| 39 |
+
model.eval()
|
| 40 |
+
|
| 41 |
+
# Run translation
|
| 42 |
+
translator = pipeline("translation_en_to_zh", model=model, tokenizer=tokenizer, device=-1)
|
| 43 |
+
|
| 44 |
+
text = "How are you?"
|
| 45 |
+
print("English:", translator(text)[0]['translation_text'])
|
| 46 |
+
```
|
| 47 |
+
|
| 48 |
+
## Model Training Summary
|
| 49 |
+
|
| 50 |
+
- Loaded dataset: wlhb/Transaltion-Chinese-2-English
|
| 51 |
+
|
| 52 |
+
- Mapped translation data: {"en": ..., "zh": ...} before training
|
| 53 |
+
|
| 54 |
+
- Training: 3 epochs using GPU
|
| 55 |
+
|
| 56 |
+
- Disabled: wandb logging
|
| 57 |
+
|
| 58 |
+
- Skipped: Evaluation phase
|
| 59 |
+
|
| 60 |
+
- Saved: Trained + Quantized model and tokenizer
|
| 61 |
+
|
| 62 |
+
- Quantization: torch.quantization.Quantize_dynamic is used for efficient CPU inference
|
| 63 |
+
|