--- license: apache-2.0 base_model: google-bert/bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: NLP_whole_dataseet_ results: [] --- # NLP_whole_dataseet_ This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0925 - Accuracy: 0.9817 - Precision: 0.9797 - Recall: 0.9828 - F1: 0.9809 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.3209 | 1.0 | 55 | 0.2928 | 0.9037 | 0.9020 | 0.8929 | 0.8950 | | 0.1962 | 2.0 | 110 | 0.1979 | 0.9450 | 0.9447 | 0.9353 | 0.9387 | | 0.2778 | 3.0 | 165 | 0.1383 | 0.9587 | 0.9530 | 0.9627 | 0.9560 | | 0.2216 | 4.0 | 220 | 0.1156 | 0.9679 | 0.9667 | 0.9640 | 0.9652 | | 0.2203 | 5.0 | 275 | 0.1061 | 0.9817 | 0.9797 | 0.9828 | 0.9809 | | 0.1948 | 6.0 | 330 | 0.0967 | 0.9817 | 0.9797 | 0.9828 | 0.9809 | | 0.2017 | 7.0 | 385 | 0.0902 | 0.9817 | 0.9797 | 0.9828 | 0.9809 | | 0.2384 | 8.0 | 440 | 0.0925 | 0.9817 | 0.9797 | 0.9828 | 0.9809 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1