Update README.md
Browse files
README.md
CHANGED
|
@@ -6,7 +6,11 @@ tags:
|
|
| 6 |
- feature-extraction
|
| 7 |
- sentence-similarity
|
| 8 |
- transformers
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
# BEE-spoke-data/mega-small-embed-syntheticSTS-16384
|
|
@@ -15,7 +19,16 @@ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentence
|
|
| 15 |
|
| 16 |
<!--- Describe your model here -->
|
| 17 |
|
| 18 |
-
## Usage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
| 21 |
|
|
@@ -36,7 +49,7 @@ print(embeddings)
|
|
| 36 |
|
| 37 |
|
| 38 |
|
| 39 |
-
|
| 40 |
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
| 41 |
|
| 42 |
```python
|
|
@@ -72,59 +85,22 @@ print("Sentence embeddings:")
|
|
| 72 |
print(sentence_embeddings)
|
| 73 |
```
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
## Evaluation Results
|
| 78 |
-
|
| 79 |
-
<!--- Describe how your model was evaluated -->
|
| 80 |
-
|
| 81 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=BEE-spoke-data/mega-small-embed-syntheticSTS-16384)
|
| 82 |
-
|
| 83 |
-
|
| 84 |
## Training
|
| 85 |
The model was trained with the parameters:
|
| 86 |
|
| 87 |
-
**DataLoader**:
|
| 88 |
-
|
| 89 |
-
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 8663 with parameters:
|
| 90 |
-
```
|
| 91 |
-
{'batch_size': 32}
|
| 92 |
-
```
|
| 93 |
|
| 94 |
**Loss**:
|
| 95 |
|
| 96 |
`sentence_transformers.losses.MatryoshkaLoss.MatryoshkaLoss` with parameters:
|
| 97 |
```
|
| 98 |
-
{'loss': '
|
| 99 |
```
|
| 100 |
|
| 101 |
-
|
| 102 |
-
```
|
| 103 |
-
{
|
| 104 |
-
"epochs": 1,
|
| 105 |
-
"evaluation_steps": 216,
|
| 106 |
-
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
| 107 |
-
"max_grad_norm": 1,
|
| 108 |
-
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
| 109 |
-
"optimizer_params": {
|
| 110 |
-
"lr": 2e-05
|
| 111 |
-
},
|
| 112 |
-
"scheduler": "WarmupLinear",
|
| 113 |
-
"steps_per_epoch": null,
|
| 114 |
-
"warmup_steps": 867,
|
| 115 |
-
"weight_decay": 0.01
|
| 116 |
-
}
|
| 117 |
-
```
|
| 118 |
-
|
| 119 |
|
| 120 |
-
## Full Model Architecture
|
| 121 |
```
|
| 122 |
SentenceTransformer(
|
| 123 |
-
(0): Transformer({'max_seq_length':
|
| 124 |
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 125 |
)
|
| 126 |
-
```
|
| 127 |
-
|
| 128 |
-
## Citing & Authors
|
| 129 |
-
|
| 130 |
-
<!--- Describe where people can find more information -->
|
|
|
|
| 6 |
- feature-extraction
|
| 7 |
- sentence-similarity
|
| 8 |
- transformers
|
| 9 |
+
license: artistic-2.0
|
| 10 |
+
datasets:
|
| 11 |
+
- pszemraj/synthetic-text-similarity
|
| 12 |
+
language:
|
| 13 |
+
- en
|
| 14 |
---
|
| 15 |
|
| 16 |
# BEE-spoke-data/mega-small-embed-syntheticSTS-16384
|
|
|
|
| 19 |
|
| 20 |
<!--- Describe your model here -->
|
| 21 |
|
| 22 |
+
## Usage
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
Regardless of method, you will need to have this specific fork of transformers installed unless you want to get errors related to padding:
|
| 26 |
+
|
| 27 |
+
```sh
|
| 28 |
+
pip install -U git+https://github.com/pszemraj/transformers.git@mega-upgrades --force-reinstall --no-deps
|
| 29 |
+
```
|
| 30 |
+
|
| 31 |
+
### Usage (Sentence-Transformers)
|
| 32 |
|
| 33 |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
| 34 |
|
|
|
|
| 49 |
|
| 50 |
|
| 51 |
|
| 52 |
+
### Usage (HuggingFace Transformers)
|
| 53 |
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
| 54 |
|
| 55 |
```python
|
|
|
|
| 85 |
print(sentence_embeddings)
|
| 86 |
```
|
| 87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
## Training
|
| 89 |
The model was trained with the parameters:
|
| 90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
**Loss**:
|
| 93 |
|
| 94 |
`sentence_transformers.losses.MatryoshkaLoss.MatryoshkaLoss` with parameters:
|
| 95 |
```
|
| 96 |
+
{'loss': 'CosineSimilarityLoss', 'matryoshka_dims': [768, 512, 256, 128, 64], 'matryoshka_weights': [1, 1, 1, 1, 1], 'n_dims_per_step': -1}
|
| 97 |
```
|
| 98 |
|
| 99 |
+
**arch**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
|
|
|
| 101 |
```
|
| 102 |
SentenceTransformer(
|
| 103 |
+
(0): Transformer({'max_seq_length': 16384, 'do_lower_case': False}) with Transformer model: MegaModel
|
| 104 |
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 105 |
)
|
| 106 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|