Safetensors
sailvl
custom_code
File size: 11,136 Bytes
4ea39ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
"""Image processor class for KimiVL."""

import math
import numpy as np
from PIL import Image
from typing import Optional, Union

import torch

import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
from transformers.image_utils import ImageInput, make_list_of_images, valid_images
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
from transformers.utils import TensorType

IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio


def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images

def dynamic_preprocess_msac1(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images, target_aspect_ratio

def dynamic_preprocess_msac2(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False, prior_aspect_ratio=None):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    new_target_ratios = []
    if prior_aspect_ratio is not None:
        for i in target_ratios:
            if prior_aspect_ratio[0]%i[0] != 0 or prior_aspect_ratio[1]%i[1] != 0:
                new_target_ratios.append(i)
            else:
                continue

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, new_target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images


class SAILVLImageProcessor(BaseImageProcessor):
    model_type = "sailvl"

    def __init__(
        self,
        patch_size: int = 14,
        image_mean: tuple[float, float, float] = IMAGENET_MEAN,
        image_std: tuple[float, float, float] = IMAGENET_STD,
        max_dynamic_patch: int = 10,
        image_size: int = 448,
        use_msac: bool = False,

        **kwargs,
    ):
        super().__init__(**kwargs)
        self.patch_size = patch_size
        self.image_mean = image_mean
        self.image_std = image_std
        self.max_dynamic_patch = max_dynamic_patch
        self.image_size = image_size
        self.use_msac = use_msac
    
    def build_transform(self, input_size):
        MEAN, STD = self.image_mean, self.image_std
        transform = T.Compose([
            T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
            T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
            T.ToTensor(),
            T.Normalize(mean=MEAN, std=STD)
        ])
        return transform

    def load_image(self, image, input_size=448, max_num=6, upscale=False):
        # image = Image.open(image_file).convert('RGB')
        if upscale:
            image = image.resize((image.width * 2, image.height * 2), Image.BILINEAR)
        transform = self.build_transform(input_size=input_size)
        images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
        pixel_values = [transform(image) for image in images]
        pixel_values = torch.stack(pixel_values)
        return pixel_values
    
    def load_image_msac(self, image, input_size=448, max_num=6, upscale=False):
        # image = Image.open(image_file).convert('RGB')
        if upscale:
            image = image.resize((image.width * 2, image.height * 2), Image.BILINEAR)
        transform = self.build_transform(input_size=input_size)
        images,target_aspect_ratio = dynamic_preprocess_msac1(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
        images = images[:-1] + dynamic_preprocess_msac2(image,max_num=max_num,image_size=input_size,use_thumbnail=False,prior_aspect_ratio=target_aspect_ratio) + images[-1:]

        pixel_values = [transform(image) for image in images]
        pixel_values = torch.stack(pixel_values)
        return pixel_values

    def preprocess(
        self,
        images: ImageInput,
        return_tensors: Optional[Union[str, TensorType]] = None,
    ) -> BatchFeature:
        images = make_list_of_images(images)

        if not valid_images(images):
            raise ValueError(
                "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
                "torch.Tensor, tf.Tensor or jax.ndarray."
            )
        # print('图片个数:',len(images))
        image_num = len(images)
        if image_num > 1:
            # image_path = [x['value'] for x in message if x['type'] == 'image']
            num_patches_list = []
            pixel_values_list = []
            for image_idx, image_pil in enumerate(images):
                upscale_flag = False
                curr_pixel_values = self.load_image(
                    image_pil, max_num=self.max_dynamic_patch, upscale=upscale_flag, input_size=self.image_size).cuda().to(torch.bfloat16)
                num_patches_list.append(curr_pixel_values.size(0))
                pixel_values_list.append(curr_pixel_values)
            pixel_values = torch.cat(pixel_values_list, dim=0)
            
        elif image_num == 1:
            # image_path = [x['value'] for x in message if x['type'] == 'image'][0]
            image_pil = images[0]
            upscale_flag = False
            if self.use_msac:
                pixel_values = self.load_image_msac(
                image_pil, max_num=self.max_dynamic_patch, upscale=upscale_flag, input_size=self.image_size).cuda().to(torch.bfloat16)
            else:
                pixel_values = self.load_image(
                    image_pil, max_num=self.max_dynamic_patch, upscale=upscale_flag, input_size=self.image_size).cuda().to(torch.bfloat16)
            num_patches_list = [pixel_values.size(0)]
        else:
            pixel_values = None
            num_patches_list = None

        # pixel_values, image_grid_hws = [], []
        # for image in images:
        #     patches, image_grid_hw = self._preprocess(image)
        #     pixel_values.append(patches)
        #     image_grid_hws.append(image_grid_hw)
        # pixel_values = torch.concat(pixel_values, dim=0)
        # image_grid_hws = np.array(image_grid_hws)
        data = {"pixel_values": pixel_values, "num_patches_list": num_patches_list}

        return BatchFeature(data=data, tensor_type=return_tensors)