Safetensors
sailvl
custom_code
SAIL-VL2-8B-Thinking / spec_sdpa_attention.py
Blue-skyyy's picture
Upload folder using huggingface_hub
360579e verified
from typing import Optional, Tuple
import torch
try:
import torch_npu
except:
print('Using N* GPU...')
import math
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def spec_sdpa_attention_forward(
module: torch.nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
dropout: float = 0.0,
scaling: Optional[float] = None,
is_causal: Optional[bool] = None,
**kwargs,
) -> Tuple[torch.Tensor, None]:
if hasattr(module, "num_key_value_groups"):
key = repeat_kv(key, module.num_key_value_groups)
value = repeat_kv(value, module.num_key_value_groups)
causal_mask = attention_mask
if attention_mask is not None and causal_mask.ndim == 4:
causal_mask = causal_mask[:, :, :, : key.shape[-2]]
# SDPA with memory-efficient backend is bugged with non-contiguous inputs and custom attn_mask for some torch versions
# Reference: https://github.com/pytorch/pytorch/issues/112577.
query = query.contiguous()
key = key.contiguous()
value = value.contiguous()
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
# Note that it is important to check first for the shape, otherwise compile will fail with `argument 'is_causal' must be bool, not SymBool`
if is_causal is None:
is_causal = query.shape[2] > 1 and causal_mask is None
# Shapes (e.g. query.shape[2]) are tensors during jit tracing, resulting in `is_causal` being a tensor.
# We convert it to a bool for the SDPA kernel that only accepts bools.
if attention_mask is None:
atten_mask_npu = torch.triu(torch.ones([query.size(-2),
query.size(-2)]), diagonal=1).bool().to(query.device)
elif attention_mask.dtype == torch.bool:
atten_mask_npu = torch.logical_not(attention_mask.bool()).to(attention_mask.device) # atten_mask需要取反
else:
atten_mask_npu = attention_mask.bool().to(attention_mask.device)
if torch.jit.is_tracing() and isinstance(is_causal, torch.Tensor):
is_causal = is_causal.item()
# attn_output = torch.nn.functional.scaled_dot_product_attention(
# query,
# key,
# value,
# attn_mask=causal_mask,
# dropout_p=dropout,
# scale=scaling,
# is_causal=is_causal,
# )
head_num = query.shape[1]
attn_output = torch_npu.npu_fusion_attention(
query, key, value, head_num, input_layout="BNSD",
pse=None,
atten_mask=atten_mask_npu,
scale=1.0 / math.sqrt(query.shape[-1]),
pre_tockens=2147483647,
next_tockens=2147483647,
keep_prob=1
)[0]
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, None