Commit
·
680e7ec
1
Parent(s):
c237d58
add data_processing
Browse files- data_preprocessing/data.py +235 -0
- data_preprocessing/data_split.py +101 -0
data_preprocessing/data.py
ADDED
|
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
import torch
|
| 3 |
+
from datasets import Dataset, DatasetDict, load_from_disk
|
| 4 |
+
from torch.utils.data import DataLoader
|
| 5 |
+
import os
|
| 6 |
+
from multiprocessing import Pool
|
| 7 |
+
from tqdm import tqdm
|
| 8 |
+
import lightning.pytorch as pl
|
| 9 |
+
sys.path.append('/home/yz927/projects/peptune/scripts/')
|
| 10 |
+
from tokenizer.my_tokenizers import SMILES_SPE_Tokenizer
|
| 11 |
+
global_tokenizer = None
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def init_pool(tokenizer):
|
| 15 |
+
global global_tokenizer
|
| 16 |
+
global_tokenizer = tokenizer
|
| 17 |
+
|
| 18 |
+
class SequenceDataset:
|
| 19 |
+
def __init__(self, sequences, tokenizer, max_sequence_length, num_cores=8):
|
| 20 |
+
self.sequences = sequences
|
| 21 |
+
self.tokenizer = tokenizer
|
| 22 |
+
self.max_sequence_length = max_sequence_length
|
| 23 |
+
self.num_cores = 8
|
| 24 |
+
self.tokenized_sequences = []
|
| 25 |
+
self.original_sequences = []
|
| 26 |
+
|
| 27 |
+
def tokenize_sequences(self):
|
| 28 |
+
print(f"Starting parallel tokenization using {self.num_cores} cores")
|
| 29 |
+
with Pool(processes=self.num_cores, initializer=init_pool, initargs=(self.tokenizer,)) as pool:
|
| 30 |
+
results = list(tqdm(
|
| 31 |
+
pool.imap(standalone_tokenize_function, self.sequences),
|
| 32 |
+
total=len(self.sequences)
|
| 33 |
+
))
|
| 34 |
+
|
| 35 |
+
for result, seq in zip(results, self.sequences):
|
| 36 |
+
if result is not None and len(result['input_ids'][0]) <= self.max_sequence_length:
|
| 37 |
+
self.tokenized_sequences.append(result)
|
| 38 |
+
self.original_sequences.append(seq)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def process_sequences(self, batch_size):
|
| 42 |
+
self.tokenize_sequences()
|
| 43 |
+
|
| 44 |
+
lengths = [(len(seq['input_ids'][0]), i) for i, seq in enumerate(self.tokenized_sequences)]
|
| 45 |
+
lengths.sort()
|
| 46 |
+
|
| 47 |
+
batches = []
|
| 48 |
+
sequence_batches = []
|
| 49 |
+
current_batch = []
|
| 50 |
+
current_sequence_batch = []
|
| 51 |
+
current_length = 0
|
| 52 |
+
|
| 53 |
+
for length, idx in tqdm(lengths):
|
| 54 |
+
if current_length + length > self.max_sequence_length or len(current_batch) == batch_size:
|
| 55 |
+
if current_batch:
|
| 56 |
+
batches.append([self.tokenized_sequences[i] for i in current_batch])
|
| 57 |
+
sequence_batches.append([self.original_sequences[i] for i in current_batch])
|
| 58 |
+
current_batch = [idx]
|
| 59 |
+
current_sequence_batch = [self.original_sequences[idx]]
|
| 60 |
+
current_length = length
|
| 61 |
+
else:
|
| 62 |
+
current_batch.append(idx)
|
| 63 |
+
current_sequence_batch.append(self.original_sequences[idx])
|
| 64 |
+
current_length += length
|
| 65 |
+
|
| 66 |
+
if current_batch:
|
| 67 |
+
batches.append([self.tokenized_sequences[i] for i in current_batch])
|
| 68 |
+
sequence_batches.append([self.original_sequences[i] for i in current_batch])
|
| 69 |
+
|
| 70 |
+
token_batch_fn = TokenizeBatch(self.tokenizer)
|
| 71 |
+
processed_batches = [token_batch_fn(batch) for batch in tqdm(batches)]
|
| 72 |
+
|
| 73 |
+
dataset = Dataset.from_dict({
|
| 74 |
+
'attention_mask': [batch['attention_mask'] for batch in processed_batches],
|
| 75 |
+
'input_ids': [batch['input_ids'] for batch in processed_batches],
|
| 76 |
+
'labels': sequence_batches
|
| 77 |
+
})
|
| 78 |
+
|
| 79 |
+
return dataset
|
| 80 |
+
|
| 81 |
+
class DynamicBatchingDataset(Dataset):
|
| 82 |
+
"""
|
| 83 |
+
Process dynamically batched datasets of Huggingface Datasets object. Need special handling since in the previous
|
| 84 |
+
steps, each batch (row in the Datasets object) is already processed for per batch loading
|
| 85 |
+
"""
|
| 86 |
+
|
| 87 |
+
def __init__(self, dataset_dict):
|
| 88 |
+
print('Initializing dataset...')
|
| 89 |
+
self.dataset_dict = {
|
| 90 |
+
'attention_mask': [torch.tensor(item) for item in dataset_dict['attention_mask']],
|
| 91 |
+
'input_ids': [torch.tensor(item) for item in dataset_dict['input_ids']],
|
| 92 |
+
'labels': dataset_dict['labels'] # Store original sequences as it is
|
| 93 |
+
}
|
| 94 |
+
|
| 95 |
+
def __len__(self):
|
| 96 |
+
return len(self.dataset_dict['attention_mask'])
|
| 97 |
+
|
| 98 |
+
def __getitem__(self, idx):
|
| 99 |
+
if isinstance(idx, int):
|
| 100 |
+
return {
|
| 101 |
+
'attention_mask': self.dataset_dict['attention_mask'][idx],
|
| 102 |
+
'input_ids': self.dataset_dict['input_ids'][idx],
|
| 103 |
+
'labels': self.dataset_dict['labels'][idx]
|
| 104 |
+
}
|
| 105 |
+
elif isinstance(idx, list):
|
| 106 |
+
return {
|
| 107 |
+
'attention_mask': [self.dataset_dict['attention_mask'][i] for i in idx],
|
| 108 |
+
'input_ids': [self.dataset_dict['input_ids'][i] for i in idx],
|
| 109 |
+
'labels': [self.dataset_dict['labels'][i] for i in idx]
|
| 110 |
+
}
|
| 111 |
+
else:
|
| 112 |
+
raise ValueError(f"Expected idx to be int or list, but got {type(idx)}")
|
| 113 |
+
|
| 114 |
+
@staticmethod
|
| 115 |
+
def collate_fn(batch, verbose=False):
|
| 116 |
+
item = batch[0]
|
| 117 |
+
return {
|
| 118 |
+
'input_ids': item['input_ids'],
|
| 119 |
+
'attention_mask': item['attention_mask'],
|
| 120 |
+
'labels': item['labels']
|
| 121 |
+
}
|
| 122 |
+
|
| 123 |
+
def standalone_tokenize_function(sequence):
|
| 124 |
+
global global_tokenizer
|
| 125 |
+
try:
|
| 126 |
+
tokens = global_tokenizer(sequence)
|
| 127 |
+
# The tokenizer already returns lists of integers, so we just need to wrap them in another list
|
| 128 |
+
# to match the expected format [batch_size, sequence_length]
|
| 129 |
+
return {
|
| 130 |
+
'input_ids': [tokens['input_ids']],
|
| 131 |
+
'attention_mask': [tokens['attention_mask']]
|
| 132 |
+
}
|
| 133 |
+
except Exception as e:
|
| 134 |
+
print(f"Error tokenizing sequence '{sequence}': {e}")
|
| 135 |
+
return None
|
| 136 |
+
|
| 137 |
+
class TokenizeBatch:
|
| 138 |
+
def __init__(self, tokenizer):
|
| 139 |
+
self.pad_token_id = tokenizer.pad_token_id
|
| 140 |
+
|
| 141 |
+
def __call__(self, batches):
|
| 142 |
+
data_tokens = [torch.tensor(batch['input_ids'][0]) for batch in batches]
|
| 143 |
+
data_tokens_padded = torch.nn.utils.rnn.pad_sequence(data_tokens, batch_first=True, padding_value=self.pad_token_id)
|
| 144 |
+
attention_masks = (data_tokens_padded != self.pad_token_id).long()
|
| 145 |
+
|
| 146 |
+
return {
|
| 147 |
+
'input_ids': data_tokens_padded,
|
| 148 |
+
'attention_mask': attention_masks,
|
| 149 |
+
}
|
| 150 |
+
|
| 151 |
+
class PretrainSequenceDataModule(pl.LightningDataModule):
|
| 152 |
+
def __init__(self,
|
| 153 |
+
tokenizer,
|
| 154 |
+
input_dataset_path,
|
| 155 |
+
output_dataset_path,
|
| 156 |
+
num_workers,
|
| 157 |
+
batch_size,
|
| 158 |
+
max_sequence_length=512,):
|
| 159 |
+
super().__init__()
|
| 160 |
+
self.tokenizer = tokenizer
|
| 161 |
+
self.input_path = input_dataset_path
|
| 162 |
+
self.output_path = output_dataset_path
|
| 163 |
+
self.num_workers = num_workers
|
| 164 |
+
self.batch_size = batch_size
|
| 165 |
+
self.max_sequence_length = max_sequence_length
|
| 166 |
+
|
| 167 |
+
def prepare_data(self):
|
| 168 |
+
if not os.path.exists(self.output_path):
|
| 169 |
+
print("Loading text files")
|
| 170 |
+
with open(f"{self.input_path}/train.txt", 'r') as f:
|
| 171 |
+
train_sequences = [line.strip() for line in f if line.strip()]
|
| 172 |
+
with open(f"{self.input_path}/val.txt", 'r') as f:
|
| 173 |
+
val_sequences = [line.strip() for line in f if line.strip()]
|
| 174 |
+
|
| 175 |
+
print("Processing training data")
|
| 176 |
+
train_dataset = SequenceDataset(train_sequences,
|
| 177 |
+
self.tokenizer,
|
| 178 |
+
self.max_sequence_length)
|
| 179 |
+
print("Processing validation data")
|
| 180 |
+
val_dataset = SequenceDataset(val_sequences,
|
| 181 |
+
self.tokenizer,
|
| 182 |
+
self.max_sequence_length)
|
| 183 |
+
|
| 184 |
+
processed_train = train_dataset.process_sequences(self.batch_size)
|
| 185 |
+
processed_val = val_dataset.process_sequences(self.batch_size)
|
| 186 |
+
|
| 187 |
+
print("Combining datasets")
|
| 188 |
+
combined_dataset = DatasetDict({
|
| 189 |
+
'train': processed_train,
|
| 190 |
+
'val': processed_val,
|
| 191 |
+
})
|
| 192 |
+
|
| 193 |
+
print(f"Saving dataset to {self.output_path}")
|
| 194 |
+
combined_dataset.save_to_disk(self.output_path)
|
| 195 |
+
|
| 196 |
+
def setup(self, stage: str):
|
| 197 |
+
print("Loading processed dataset")
|
| 198 |
+
dataset = load_from_disk(self.output_path)
|
| 199 |
+
self.train_dataset = DynamicBatchingDataset(dataset['train'])
|
| 200 |
+
self.val_dataset = DynamicBatchingDataset(dataset['val'])
|
| 201 |
+
|
| 202 |
+
def train_dataloader(self):
|
| 203 |
+
print("Creating training dataloader")
|
| 204 |
+
return DataLoader(self.train_dataset,
|
| 205 |
+
batch_size=1,
|
| 206 |
+
shuffle=False,
|
| 207 |
+
num_workers=self.num_workers,
|
| 208 |
+
collate_fn=DynamicBatchingDataset.collate_fn,
|
| 209 |
+
pin_memory=True)
|
| 210 |
+
|
| 211 |
+
def val_dataloader(self):
|
| 212 |
+
print("Creating validation dataloader")
|
| 213 |
+
return DataLoader(self.val_dataset,
|
| 214 |
+
batch_size=1,
|
| 215 |
+
shuffle=False,
|
| 216 |
+
num_workers=self.num_workers,
|
| 217 |
+
collate_fn=DynamicBatchingDataset.collate_fn,
|
| 218 |
+
pin_memory=True)
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
if __name__ == '__main__':
|
| 222 |
+
tokenizer = SMILES_SPE_Tokenizer('/home/st512/peptune/scripts/peptide-mdlm-mcts/tokenizer/new_vocab.txt',
|
| 223 |
+
'/home/st512/peptune/scripts/peptide-mdlm-mcts/tokenizer/new_splits.txt')
|
| 224 |
+
dm = PretrainSequenceDataModule(
|
| 225 |
+
tokenizer=tokenizer,
|
| 226 |
+
input_dataset_path='/home/yz927/projects/peptune/tokens/11M_smiles',
|
| 227 |
+
output_dataset_path='/home/yz927/projects/peptune/tokenized/11M_smiles_old_tokenizer_no_limit',
|
| 228 |
+
num_workers=8,
|
| 229 |
+
batch_size=2000,
|
| 230 |
+
max_sequence_length=16*1000,
|
| 231 |
+
)
|
| 232 |
+
dm.prepare_data()
|
| 233 |
+
dm.setup('fit')
|
| 234 |
+
dm.train_dataloader()
|
| 235 |
+
dm.val_dataloader()
|
data_preprocessing/data_split.py
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from rdkit import Chem
|
| 2 |
+
from rdkit.Chem import AllChem
|
| 3 |
+
from rdkit import DataStructs
|
| 4 |
+
import numpy as np
|
| 5 |
+
from sklearn.cluster import MiniBatchKMeans
|
| 6 |
+
from collections import defaultdict
|
| 7 |
+
from tqdm import tqdm
|
| 8 |
+
import selfies as sf
|
| 9 |
+
from multiprocessing import Pool, cpu_count
|
| 10 |
+
from functools import partial
|
| 11 |
+
def generate_fingerprint_batch_selfies(selfies_batch):
|
| 12 |
+
fps = []
|
| 13 |
+
valid_selfies = []
|
| 14 |
+
|
| 15 |
+
for selfies in tqdm(selfies_batch, desc="Generating fingerprints", leave=False):
|
| 16 |
+
try:
|
| 17 |
+
# Convert SELFIES to SMILES then to molecule
|
| 18 |
+
smiles = sf.decoder(selfies)
|
| 19 |
+
mol = Chem.MolFromSmiles(smiles)
|
| 20 |
+
if mol is not None:
|
| 21 |
+
fp = AllChem.GetMorganFingerprintAsBitVect(mol, 2, 2048)
|
| 22 |
+
arr = np.zeros((1,))
|
| 23 |
+
DataStructs.ConvertToNumpyArray(fp, arr)
|
| 24 |
+
fps.append(arr)
|
| 25 |
+
valid_selfies.append(selfies)
|
| 26 |
+
except:
|
| 27 |
+
continue
|
| 28 |
+
|
| 29 |
+
return np.array(fps), valid_selfies
|
| 30 |
+
|
| 31 |
+
def process_batch(batch, n_clusters, seed):
|
| 32 |
+
fps, valid_selfies = generate_fingerprint_batch_selfies(batch)
|
| 33 |
+
if len(fps) > 0:
|
| 34 |
+
clusterer = MiniBatchKMeans(n_clusters=n_clusters, random_state=seed)
|
| 35 |
+
clusterer.fit(fps)
|
| 36 |
+
labels = clusterer.predict(fps)
|
| 37 |
+
return list(zip(labels, valid_selfies))
|
| 38 |
+
return []
|
| 39 |
+
|
| 40 |
+
def parallel_clustering_split_selfies(selfies_list, batch_size=10000, n_clusters=1000, train_ratio=0.9, seed=42):
|
| 41 |
+
np.random.seed(seed)
|
| 42 |
+
|
| 43 |
+
# Create batches
|
| 44 |
+
batches = [selfies_list[i:i + batch_size]
|
| 45 |
+
for i in range(0, len(selfies_list), batch_size)]
|
| 46 |
+
|
| 47 |
+
# Initialize parallel processing
|
| 48 |
+
n_cores = 12
|
| 49 |
+
process_batch_partial = partial(process_batch, n_clusters=n_clusters, seed=seed)
|
| 50 |
+
|
| 51 |
+
cluster_assignments = defaultdict(list)
|
| 52 |
+
with Pool(n_cores) as pool:
|
| 53 |
+
results = list(tqdm(
|
| 54 |
+
pool.imap(process_batch_partial, batches),
|
| 55 |
+
total=len(batches),
|
| 56 |
+
desc="Processing batches"
|
| 57 |
+
))
|
| 58 |
+
|
| 59 |
+
# Combine results
|
| 60 |
+
for batch_results in results:
|
| 61 |
+
for label, selfies in batch_results:
|
| 62 |
+
cluster_assignments[label].append(selfies)
|
| 63 |
+
|
| 64 |
+
# Split into train/val
|
| 65 |
+
clusters = list(cluster_assignments.values())
|
| 66 |
+
np.random.shuffle(clusters)
|
| 67 |
+
|
| 68 |
+
train_selfies = []
|
| 69 |
+
val_selfies = []
|
| 70 |
+
total_mols = sum(len(cluster) for cluster in clusters)
|
| 71 |
+
|
| 72 |
+
for cluster in tqdm(clusters, desc="Splitting clusters"):
|
| 73 |
+
if len(train_selfies) / total_mols < train_ratio:
|
| 74 |
+
train_selfies.extend(cluster)
|
| 75 |
+
else:
|
| 76 |
+
val_selfies.extend(cluster)
|
| 77 |
+
|
| 78 |
+
print(f"Final splits: Train={len(train_selfies)}, Validation={len(val_selfies)}")
|
| 79 |
+
return train_selfies, val_selfies
|
| 80 |
+
|
| 81 |
+
try:
|
| 82 |
+
with open('/home/yz927/projects/peptune/tokens/filtered_peptides_selfies.txt', 'r') as f:
|
| 83 |
+
selfies_list = [line.strip() for line in f if line.strip()]
|
| 84 |
+
print(f"Loaded {len(selfies_list)} selfies sequences from file")
|
| 85 |
+
except FileNotFoundError:
|
| 86 |
+
raise FileNotFoundError(f"Could not find the file at file")
|
| 87 |
+
except Exception as e:
|
| 88 |
+
raise Exception(f"Error reading file: {str(e)}")
|
| 89 |
+
|
| 90 |
+
train_selfies, val_selfies = parallel_clustering_split_selfies(
|
| 91 |
+
selfies_list,
|
| 92 |
+
batch_size=10000,
|
| 93 |
+
n_clusters=1000,
|
| 94 |
+
train_ratio=0.8
|
| 95 |
+
)
|
| 96 |
+
with open('/home/yz927/projects/peptune/tokens/11M_selfies/train_selfies.txt', 'w') as f:
|
| 97 |
+
for line in train_selfies:
|
| 98 |
+
f.write(f"{line}\n")
|
| 99 |
+
with open('/home/yz927/projects/peptune/tokens/11M_selfies/val_selfies.txt', 'w') as f:
|
| 100 |
+
for line in val_selfies:
|
| 101 |
+
f.write(f"{line}\n")
|