CodeGoat24's picture
Update README.md
2628df4 verified
---
library_name: transformers
license: mit
datasets:
- CodeGoat24/UniGenBench-Eval-Images
base_model:
- CodeGoat24/UnifiedReward-2.0-qwen-72b
---
# UniGenBench-EvalModel-qwen-72b-v1
This model is tailored for offline T2I model evaluation on [UniGenBench](https://github.com/CodeGoat24/UniGenBench), which achieves an average accuracy of 94% compared to evaluations by Gemini 2.5 Pro.
Feel free to use this model to assess and compare the performance of your models.
![image](https://cdn-uploads.huggingface.co/production/uploads/654c6845bac6e6e49895a5b5/gsE1RuzJq2lAlPh8bLSWf.png)
![image](https://cdn-uploads.huggingface.co/production/uploads/654c6845bac6e6e49895a5b5/k9ZzcWY6zGM0mUmml8lnS.png)
For further details, please refer to the following resources:
- πŸ“° Paper: https://arxiv.org/pdf/2508.20751
- πŸͺ Project Page: https://codegoat24.github.io/UnifiedReward/Pref-GRPO
- πŸ€— UniGenBench: https://github.com/CodeGoat24/UniGenBench
- πŸ€— Leaderboard: https://huggingface.co/spaces/CodeGoat24/UniGenBench_Leaderboard
- πŸ‘‹ Point of Contact: [Yibin Wang](https://codegoat24.github.io)
## Citation
```bibtex
@article{UniGenBench++,
title={UniGenBench++: A Unified Semantic Evaluation Benchmark for Text-to-Image Generation},
author={Wang, Yibin and Li, Zhimin and Zang, Yuhang and Bu, Jiazi and Zhou, Yujie and Xin, Yi and He, Junjun and Wang, Chunyu and Lu, Qinglin and Jin, Cheng and others},
journal={arXiv preprint arXiv:2510.18701},
year={2025}
}
@article{UniGenBench,
title={Pref-GRPO: Pairwise Preference Reward-based GRPO for Stable Text-to-Image Reinforcement Learning},
author={Wang, Yibin and Li, Zhimin and Zang, Yuhang and Zhou, Yujie and Bu, Jiazi and Wang, Chunyu and Lu, Qinglin, and Jin, Cheng and Wang, Jiaqi},
journal={arXiv preprint arXiv:2508.20751},
year={2025}
}
```