--- library_name: transformers license: mit datasets: - CodeGoat24/UniGenBench-Eval-Images base_model: - CodeGoat24/UnifiedReward-2.0-qwen-72b --- # UniGenBench-EvalModel-qwen-72b-v1 This model is tailored for offline T2I model evaluation on [UniGenBench](https://github.com/CodeGoat24/UniGenBench), which achieves an average accuracy of 94% compared to evaluations by Gemini 2.5 Pro. Feel free to use this model to assess and compare the performance of your models. ![image](https://cdn-uploads.huggingface.co/production/uploads/654c6845bac6e6e49895a5b5/gsE1RuzJq2lAlPh8bLSWf.png) ![image](https://cdn-uploads.huggingface.co/production/uploads/654c6845bac6e6e49895a5b5/k9ZzcWY6zGM0mUmml8lnS.png) For further details, please refer to the following resources: - 📰 Paper: https://arxiv.org/pdf/2508.20751 - 🪐 Project Page: https://codegoat24.github.io/UnifiedReward/Pref-GRPO - 🤗 UniGenBench: https://github.com/CodeGoat24/UniGenBench - 🤗 Leaderboard: https://huggingface.co/spaces/CodeGoat24/UniGenBench_Leaderboard - 👋 Point of Contact: [Yibin Wang](https://codegoat24.github.io) ## Citation ```bibtex @article{UniGenBench++, title={UniGenBench++: A Unified Semantic Evaluation Benchmark for Text-to-Image Generation}, author={Wang, Yibin and Li, Zhimin and Zang, Yuhang and Bu, Jiazi and Zhou, Yujie and Xin, Yi and He, Junjun and Wang, Chunyu and Lu, Qinglin and Jin, Cheng and others}, journal={arXiv preprint arXiv:2510.18701}, year={2025} } @article{UniGenBench, title={Pref-GRPO: Pairwise Preference Reward-based GRPO for Stable Text-to-Image Reinforcement Learning}, author={Wang, Yibin and Li, Zhimin and Zang, Yuhang and Zhou, Yujie and Bu, Jiazi and Wang, Chunyu and Lu, Qinglin, and Jin, Cheng and Wang, Jiaqi}, journal={arXiv preprint arXiv:2508.20751}, year={2025} } ```