CoderBak commited on
Commit
f792c4d
·
1 Parent(s): c852819

Add model and tokenizer files

Browse files
README.md ADDED
@@ -0,0 +1,259 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - multilingual
4
+ - af
5
+ - sq
6
+ - ar
7
+ - an
8
+ - hy
9
+ - ast
10
+ - az
11
+ - ba
12
+ - eu
13
+ - bar
14
+ - be
15
+ - bn
16
+ - inc
17
+ - bs
18
+ - br
19
+ - bg
20
+ - my
21
+ - ca
22
+ - ceb
23
+ - ce
24
+ - zh
25
+ - cv
26
+ - hr
27
+ - cs
28
+ - da
29
+ - nl
30
+ - en
31
+ - et
32
+ - fi
33
+ - fr
34
+ - gl
35
+ - ka
36
+ - de
37
+ - el
38
+ - gu
39
+ - ht
40
+ - he
41
+ - hi
42
+ - hu
43
+ - is
44
+ - io
45
+ - id
46
+ - ga
47
+ - it
48
+ - ja
49
+ - jv
50
+ - kn
51
+ - kk
52
+ - ky
53
+ - ko
54
+ - la
55
+ - lv
56
+ - lt
57
+ - roa
58
+ - nds
59
+ - lm
60
+ - mk
61
+ - mg
62
+ - ms
63
+ - ml
64
+ - mr
65
+ - mn
66
+ - min
67
+ - ne
68
+ - new
69
+ - nb
70
+ - nn
71
+ - oc
72
+ - fa
73
+ - pms
74
+ - pl
75
+ - pt
76
+ - pa
77
+ - ro
78
+ - ru
79
+ - sco
80
+ - sr
81
+ - hr
82
+ - scn
83
+ - sk
84
+ - sl
85
+ - aze
86
+ - es
87
+ - su
88
+ - sw
89
+ - sv
90
+ - tl
91
+ - tg
92
+ - th
93
+ - ta
94
+ - tt
95
+ - te
96
+ - tr
97
+ - uk
98
+ - ud
99
+ - uz
100
+ - vi
101
+ - vo
102
+ - war
103
+ - cy
104
+ - fry
105
+ - pnb
106
+ - yo
107
+ license: apache-2.0
108
+ datasets:
109
+ - wikipedia
110
+ ---
111
+
112
+ This a trained version of
113
+ bert-base-multilingual-cased which is trained on a large scale energy QA judging dataset. This is the model at step 1220.
114
+
115
+ # BERT multilingual base model (cased)
116
+
117
+ Pretrained model on the top 104 languages with the largest Wikipedia using a masked language modeling (MLM) objective.
118
+ It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in
119
+ [this repository](https://github.com/google-research/bert). This model is case sensitive: it makes a difference
120
+ between english and English.
121
+
122
+ Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by
123
+ the Hugging Face team.
124
+
125
+ ## Model description
126
+
127
+ BERT is a transformers model pretrained on a large corpus of multilingual data in a self-supervised fashion. This means
128
+ it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
129
+ publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
130
+ was pretrained with two objectives:
131
+
132
+ - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
133
+ the entire masked sentence through the model and has to predict the masked words. This is different from traditional
134
+ recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
135
+ GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
136
+ sentence.
137
+ - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes
138
+ they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to
139
+ predict if the two sentences were following each other or not.
140
+
141
+ This way, the model learns an inner representation of the languages in the training set that can then be used to
142
+ extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a
143
+ standard classifier using the features produced by the BERT model as inputs.
144
+
145
+ ## Intended uses & limitations
146
+
147
+ You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
148
+ be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for
149
+ fine-tuned versions on a task that interests you.
150
+
151
+ Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
152
+ to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
153
+ generation you should look at model like GPT2.
154
+
155
+ ### How to use
156
+
157
+ You can use this model directly with a pipeline for masked language modeling:
158
+
159
+ ```python
160
+ >>> from transformers import pipeline
161
+ >>> unmasker = pipeline('fill-mask', model='bert-base-multilingual-cased')
162
+ >>> unmasker("Hello I'm a [MASK] model.")
163
+
164
+ [{'sequence': "[CLS] Hello I'm a model model. [SEP]",
165
+ 'score': 0.10182085633277893,
166
+ 'token': 13192,
167
+ 'token_str': 'model'},
168
+ {'sequence': "[CLS] Hello I'm a world model. [SEP]",
169
+ 'score': 0.052126359194517136,
170
+ 'token': 11356,
171
+ 'token_str': 'world'},
172
+ {'sequence': "[CLS] Hello I'm a data model. [SEP]",
173
+ 'score': 0.048930276185274124,
174
+ 'token': 11165,
175
+ 'token_str': 'data'},
176
+ {'sequence': "[CLS] Hello I'm a flight model. [SEP]",
177
+ 'score': 0.02036019042134285,
178
+ 'token': 23578,
179
+ 'token_str': 'flight'},
180
+ {'sequence': "[CLS] Hello I'm a business model. [SEP]",
181
+ 'score': 0.020079681649804115,
182
+ 'token': 14155,
183
+ 'token_str': 'business'}]
184
+ ```
185
+
186
+ Here is how to use this model to get the features of a given text in PyTorch:
187
+
188
+ ```python
189
+ from transformers import BertTokenizer, BertModel
190
+ tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
191
+ model = BertModel.from_pretrained("bert-base-multilingual-cased")
192
+ text = "Replace me by any text you'd like."
193
+ encoded_input = tokenizer(text, return_tensors='pt')
194
+ output = model(**encoded_input)
195
+ ```
196
+
197
+ and in TensorFlow:
198
+
199
+ ```python
200
+ from transformers import BertTokenizer, TFBertModel
201
+ tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased')
202
+ model = TFBertModel.from_pretrained("bert-base-multilingual-cased")
203
+ text = "Replace me by any text you'd like."
204
+ encoded_input = tokenizer(text, return_tensors='tf')
205
+ output = model(encoded_input)
206
+ ```
207
+
208
+ ## Training data
209
+
210
+ The BERT model was pretrained on the 104 languages with the largest Wikipedias. You can find the complete list
211
+ [here](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages).
212
+
213
+ ## Training procedure
214
+
215
+ ### Preprocessing
216
+
217
+ The texts are lowercased and tokenized using WordPiece and a shared vocabulary size of 110,000. The languages with a
218
+ larger Wikipedia are under-sampled and the ones with lower resources are oversampled. For languages like Chinese,
219
+ Japanese Kanji and Korean Hanja that don't have space, a CJK Unicode block is added around every character.
220
+
221
+ The inputs of the model are then of the form:
222
+
223
+ ```
224
+ [CLS] Sentence A [SEP] Sentence B [SEP]
225
+ ```
226
+
227
+ With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in
228
+ the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a
229
+ consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two
230
+ "sentences" has a combined length of less than 512 tokens.
231
+
232
+ The details of the masking procedure for each sentence are the following:
233
+ - 15% of the tokens are masked.
234
+ - In 80% of the cases, the masked tokens are replaced by `[MASK]`.
235
+ - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
236
+ - In the 10% remaining cases, the masked tokens are left as is.
237
+
238
+
239
+ ### BibTeX entry and citation info
240
+
241
+ ```bibtex
242
+ @article{DBLP:journals/corr/abs-1810-04805,
243
+ author = {Jacob Devlin and
244
+ Ming{-}Wei Chang and
245
+ Kenton Lee and
246
+ Kristina Toutanova},
247
+ title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language
248
+ Understanding},
249
+ journal = {CoRR},
250
+ volume = {abs/1810.04805},
251
+ year = {2018},
252
+ url = {http://arxiv.org/abs/1810.04805},
253
+ archivePrefix = {arXiv},
254
+ eprint = {1810.04805},
255
+ timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},
256
+ biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},
257
+ bibsource = {dblp computer science bibliography, https://dblp.org}
258
+ }
259
+ ```
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "directionality": "bidi",
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "pooler_fc_size": 768,
20
+ "pooler_num_attention_heads": 12,
21
+ "pooler_num_fc_layers": 3,
22
+ "pooler_size_per_head": 128,
23
+ "pooler_type": "first_token_transform",
24
+ "position_embedding_type": "absolute",
25
+ "torch_dtype": "float32",
26
+ "transformers_version": "4.51.1",
27
+ "type_vocab_size": 2,
28
+ "use_cache": true,
29
+ "vocab_size": 119547
30
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68cf33d5e6e03f49d9cbe552a8d098e1f4ba766a5a0a301826f82e030fc71b2e
3
+ size 711436136
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93f5b2ac25380c56e6082c4165bcf19f1339658d80354e103d2171eb24dbdbfa
3
+ size 712680822
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": false,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "pad_token": "[PAD]",
51
+ "sep_token": "[SEP]",
52
+ "strip_accents": null,
53
+ "tokenize_chinese_chars": true,
54
+ "tokenizer_class": "BertTokenizer",
55
+ "unk_token": "[UNK]"
56
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff