--- base_model: - Qwen/Qwen-Image base_model_relation: quantized tags: - dfloat11 - df11 - lossless compression - 70% size, 100% accuracy --- # DFloat11 Compressed Model: `Qwen/Qwen-Image` This is a **DFloat11 losslessly compressed** version of the original `Qwen/Qwen-Image` model. It reduces model size by **32%** compared to the original BFloat16 model, while maintaining **bit-identical outputs** and supporting **efficient GPU inference**. šŸ”„šŸ”„šŸ”„ Thanks to DFloat11 compression, Qwen-Image can now run on **a single 32GB GPU**, or on **a single 16GB GPU with CPU offloading**, while maintaining full model quality. šŸ”„šŸ”„šŸ”„ ### šŸ“Š Performance Comparison | Model | Model Size | Peak GPU Memory (1328x1328 image generation) | Generation Time (A100 GPU) | |-------------------------------------------|------------|----------------------------------------------|----------------------------| | Qwen-Image (BFloat16) | ~41 GB | OOM | - | | Qwen-Image (DFloat11) | 28.42 GB | 29.74 GB | 100 seconds | | Qwen-Image (DFloat11 + GPU Offloading) | 28.42 GB | 16.68 GB | 260 seconds | ### šŸ”§ How to Use 1. Install or upgrade the DFloat11 pip package *(installs the CUDA kernel automatically; requires a CUDA-compatible GPU and PyTorch installed)*: ```bash pip install -U dfloat11[cuda12] ``` 2. Install or upgrade diffusers: ```bash pip install git+https://github.com/huggingface/diffusers ``` 3. Save the following code to a Python file `qwen_image.py`: ```python from diffusers import DiffusionPipeline, QwenImageTransformer2DModel import torch from transformers.modeling_utils import no_init_weights from dfloat11 import DFloat11Model import argparse def parse_args(): parser = argparse.ArgumentParser(description='Generate images using Qwen-Image model') parser.add_argument('--cpu_offload', action='store_true', help='Enable CPU offloading') parser.add_argument('--prompt', type=str, default='A coffee shop entrance features a chalkboard sign reading "Qwen Coffee 😊 $2 per cup," with a neon light beside it displaying "通义千问". Next to it hangs a poster showing a beautiful Chinese woman, and beneath the poster is written "Ļ€ā‰ˆ3.1415926-53589793-23846264-33832795-02384197".', help='Text prompt for image generation') parser.add_argument('--negative_prompt', type=str, default=' ', help='Negative prompt for image generation') parser.add_argument('--aspect_ratio', type=str, default='16:9', choices=['1:1', '16:9', '9:16', '4:3', '3:4'], help='Aspect ratio of generated image') parser.add_argument('--num_inference_steps', type=int, default=50, help='Number of denoising steps') parser.add_argument('--true_cfg_scale', type=float, default=4.0, help='Classifier free guidance scale') parser.add_argument('--seed', type=int, default=42, help='Random seed for generation') parser.add_argument('--output', type=str, default='example.png', help='Output image path') parser.add_argument('--language', type=str, default='en', choices=['en', 'zh'], help='Language for positive magic prompt') return parser.parse_args() args = parse_args() model_name = "Qwen/Qwen-Image" with no_init_weights(): transformer = QwenImageTransformer2DModel.from_config( QwenImageTransformer2DModel.load_config( model_name, subfolder="transformer", ), ).to(torch.bfloat16) DFloat11Model.from_pretrained( "DFloat11/Qwen-Image-DF11", device="cpu", cpu_offload=args.cpu_offload, bfloat16_model=transformer, ) pipe = DiffusionPipeline.from_pretrained( model_name, transformer=transformer, torch_dtype=torch.bfloat16, ) pipe.enable_model_cpu_offload() positive_magic = { "en": "Ultra HD, 4K, cinematic composition.", # for english prompt, "zh": "č¶…ęø…ļ¼Œ4Kļ¼Œē”µå½±ēŗ§ęž„å›¾" # for chinese prompt, } # Generate with different aspect ratios aspect_ratios = { "1:1": (1328, 1328), "16:9": (1664, 928), "9:16": (928, 1664), "4:3": (1472, 1140), "3:4": (1140, 1472), } width, height = aspect_ratios[args.aspect_ratio] image = pipe( prompt=args.prompt + positive_magic[args.language], negative_prompt=args.negative_prompt, width=width, height=height, num_inference_steps=args.num_inference_steps, true_cfg_scale=args.true_cfg_scale, generator=torch.Generator(device="cuda").manual_seed(args.seed) ).images[0] image.save(args.output) max_memory = torch.cuda.max_memory_allocated() print(f"Max memory: {max_memory / (1000 ** 3):.2f} GB") ``` 4. To run without CPU offloading (32GB VRAM required): ```bash python qwen_image.py ``` To run with CPU offloading (16GB VRAM required): ```bash python qwen_image.py --cpu_offload ``` ### šŸ” How It Works We apply **Huffman coding** to losslessly compress the exponent bits of BFloat16 model weights, which are highly compressible (their 8 bits carry only ~2.6 bits of actual information). To enable fast inference, we implement a highly efficient CUDA kernel that performs on-the-fly weight decompression directly on the GPU. The result is a model that is **~32% smaller**, delivers **bit-identical outputs**, and achieves performance **comparable to the original** BFloat16 model. Learn more in our [research paper](https://arxiv.org/abs/2504.11651). ### šŸ“„ Learn More * **Paper**: [70% Size, 100% Accuracy: Lossless LLM Compression for Efficient GPU Inference via Dynamic-Length Float](https://arxiv.org/abs/2504.11651) * **GitHub**: [https://github.com/LeanModels/DFloat11](https://github.com/LeanModels/DFloat11) * **HuggingFace**: [https://huggingface.co/DFloat11](https://huggingface.co/DFloat11)