Create inference.py
Browse files- inference.py +322 -0
inference.py
ADDED
|
@@ -0,0 +1,322 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Helion-V1.5-XL Inference Script
|
| 3 |
+
Supports multiple inference modes and optimization techniques
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
from transformers import (
|
| 8 |
+
AutoTokenizer,
|
| 9 |
+
AutoModelForCausalLM,
|
| 10 |
+
BitsAndBytesConfig,
|
| 11 |
+
GenerationConfig
|
| 12 |
+
)
|
| 13 |
+
from typing import Optional, Dict, Any, List
|
| 14 |
+
import argparse
|
| 15 |
+
import json
|
| 16 |
+
import time
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class HelionInference:
|
| 20 |
+
"""Inference wrapper for Helion-V1.5-XL"""
|
| 21 |
+
|
| 22 |
+
def __init__(
|
| 23 |
+
self,
|
| 24 |
+
model_name: str = "DeepXR/Helion-V1.5-XL",
|
| 25 |
+
load_in_4bit: bool = False,
|
| 26 |
+
load_in_8bit: bool = False,
|
| 27 |
+
device_map: str = "auto",
|
| 28 |
+
torch_dtype: str = "bfloat16"
|
| 29 |
+
):
|
| 30 |
+
"""
|
| 31 |
+
Initialize the model and tokenizer
|
| 32 |
+
|
| 33 |
+
Args:
|
| 34 |
+
model_name: HuggingFace model identifier
|
| 35 |
+
load_in_4bit: Enable 4-bit quantization
|
| 36 |
+
load_in_8bit: Enable 8-bit quantization
|
| 37 |
+
device_map: Device mapping strategy
|
| 38 |
+
torch_dtype: PyTorch dtype for model weights
|
| 39 |
+
"""
|
| 40 |
+
self.model_name = model_name
|
| 41 |
+
print(f"Loading model: {model_name}")
|
| 42 |
+
|
| 43 |
+
# Setup dtype
|
| 44 |
+
dtype_map = {
|
| 45 |
+
"bfloat16": torch.bfloat16,
|
| 46 |
+
"float16": torch.float16,
|
| 47 |
+
"float32": torch.float32
|
| 48 |
+
}
|
| 49 |
+
torch_dtype = dtype_map.get(torch_dtype, torch.bfloat16)
|
| 50 |
+
|
| 51 |
+
# Setup quantization config
|
| 52 |
+
quantization_config = None
|
| 53 |
+
if load_in_4bit:
|
| 54 |
+
quantization_config = BitsAndBytesConfig(
|
| 55 |
+
load_in_4bit=True,
|
| 56 |
+
bnb_4bit_compute_dtype=torch_dtype,
|
| 57 |
+
bnb_4bit_use_double_quant=True,
|
| 58 |
+
bnb_4bit_quant_type="nf4"
|
| 59 |
+
)
|
| 60 |
+
elif load_in_8bit:
|
| 61 |
+
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
| 62 |
+
|
| 63 |
+
# Load tokenizer
|
| 64 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 65 |
+
model_name,
|
| 66 |
+
trust_remote_code=True
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
# Load model
|
| 70 |
+
model_kwargs = {
|
| 71 |
+
"device_map": device_map,
|
| 72 |
+
"trust_remote_code": True,
|
| 73 |
+
}
|
| 74 |
+
|
| 75 |
+
if quantization_config:
|
| 76 |
+
model_kwargs["quantization_config"] = quantization_config
|
| 77 |
+
else:
|
| 78 |
+
model_kwargs["torch_dtype"] = torch_dtype
|
| 79 |
+
|
| 80 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 81 |
+
model_name,
|
| 82 |
+
**model_kwargs
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
self.model.eval()
|
| 86 |
+
print("Model loaded successfully!")
|
| 87 |
+
|
| 88 |
+
def generate(
|
| 89 |
+
self,
|
| 90 |
+
prompt: str,
|
| 91 |
+
max_new_tokens: int = 512,
|
| 92 |
+
temperature: float = 0.7,
|
| 93 |
+
top_p: float = 0.9,
|
| 94 |
+
top_k: int = 50,
|
| 95 |
+
repetition_penalty: float = 1.1,
|
| 96 |
+
do_sample: bool = True,
|
| 97 |
+
num_return_sequences: int = 1,
|
| 98 |
+
**kwargs
|
| 99 |
+
) -> List[str]:
|
| 100 |
+
"""
|
| 101 |
+
Generate text from a prompt
|
| 102 |
+
|
| 103 |
+
Args:
|
| 104 |
+
prompt: Input text prompt
|
| 105 |
+
max_new_tokens: Maximum number of tokens to generate
|
| 106 |
+
temperature: Sampling temperature (0.0 to 2.0)
|
| 107 |
+
top_p: Nucleus sampling threshold
|
| 108 |
+
top_k: Top-k sampling threshold
|
| 109 |
+
repetition_penalty: Penalty for repetition
|
| 110 |
+
do_sample: Whether to use sampling
|
| 111 |
+
num_return_sequences: Number of sequences to generate
|
| 112 |
+
|
| 113 |
+
Returns:
|
| 114 |
+
List of generated text strings
|
| 115 |
+
"""
|
| 116 |
+
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
|
| 117 |
+
|
| 118 |
+
generation_config = GenerationConfig(
|
| 119 |
+
max_new_tokens=max_new_tokens,
|
| 120 |
+
temperature=temperature,
|
| 121 |
+
top_p=top_p,
|
| 122 |
+
top_k=top_k,
|
| 123 |
+
repetition_penalty=repetition_penalty,
|
| 124 |
+
do_sample=do_sample,
|
| 125 |
+
num_return_sequences=num_return_sequences,
|
| 126 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
| 127 |
+
eos_token_id=self.tokenizer.eos_token_id,
|
| 128 |
+
**kwargs
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
start_time = time.time()
|
| 132 |
+
|
| 133 |
+
with torch.no_grad():
|
| 134 |
+
outputs = self.model.generate(
|
| 135 |
+
**inputs,
|
| 136 |
+
generation_config=generation_config
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
generation_time = time.time() - start_time
|
| 140 |
+
|
| 141 |
+
# Decode outputs
|
| 142 |
+
responses = []
|
| 143 |
+
for output in outputs:
|
| 144 |
+
response = self.tokenizer.decode(output, skip_special_tokens=True)
|
| 145 |
+
# Remove the prompt from response
|
| 146 |
+
response = response[len(prompt):].strip()
|
| 147 |
+
responses.append(response)
|
| 148 |
+
|
| 149 |
+
# Calculate tokens per second
|
| 150 |
+
total_tokens = sum(len(output) for output in outputs)
|
| 151 |
+
tokens_per_sec = total_tokens / generation_time
|
| 152 |
+
|
| 153 |
+
print(f"\nGeneration Stats:")
|
| 154 |
+
print(f" Time: {generation_time:.2f}s")
|
| 155 |
+
print(f" Tokens/sec: {tokens_per_sec:.2f}")
|
| 156 |
+
|
| 157 |
+
return responses
|
| 158 |
+
|
| 159 |
+
def chat(
|
| 160 |
+
self,
|
| 161 |
+
messages: List[Dict[str, str]],
|
| 162 |
+
max_new_tokens: int = 512,
|
| 163 |
+
temperature: float = 0.7,
|
| 164 |
+
**kwargs
|
| 165 |
+
) -> str:
|
| 166 |
+
"""
|
| 167 |
+
Generate response in chat format
|
| 168 |
+
|
| 169 |
+
Args:
|
| 170 |
+
messages: List of message dicts with 'role' and 'content'
|
| 171 |
+
max_new_tokens: Maximum tokens to generate
|
| 172 |
+
temperature: Sampling temperature
|
| 173 |
+
|
| 174 |
+
Returns:
|
| 175 |
+
Generated response string
|
| 176 |
+
"""
|
| 177 |
+
# Apply chat template
|
| 178 |
+
prompt = self.tokenizer.apply_chat_template(
|
| 179 |
+
messages,
|
| 180 |
+
tokenize=False,
|
| 181 |
+
add_generation_prompt=True
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
responses = self.generate(
|
| 185 |
+
prompt,
|
| 186 |
+
max_new_tokens=max_new_tokens,
|
| 187 |
+
temperature=temperature,
|
| 188 |
+
**kwargs
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
return responses[0]
|
| 192 |
+
|
| 193 |
+
def batch_generate(
|
| 194 |
+
self,
|
| 195 |
+
prompts: List[str],
|
| 196 |
+
max_new_tokens: int = 512,
|
| 197 |
+
**kwargs
|
| 198 |
+
) -> List[str]:
|
| 199 |
+
"""
|
| 200 |
+
Generate responses for multiple prompts in batch
|
| 201 |
+
|
| 202 |
+
Args:
|
| 203 |
+
prompts: List of input prompts
|
| 204 |
+
max_new_tokens: Maximum tokens per generation
|
| 205 |
+
|
| 206 |
+
Returns:
|
| 207 |
+
List of generated responses
|
| 208 |
+
"""
|
| 209 |
+
inputs = self.tokenizer(
|
| 210 |
+
prompts,
|
| 211 |
+
return_tensors="pt",
|
| 212 |
+
padding=True,
|
| 213 |
+
truncation=True
|
| 214 |
+
).to(self.model.device)
|
| 215 |
+
|
| 216 |
+
with torch.no_grad():
|
| 217 |
+
outputs = self.model.generate(
|
| 218 |
+
**inputs,
|
| 219 |
+
max_new_tokens=max_new_tokens,
|
| 220 |
+
**kwargs
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
responses = []
|
| 224 |
+
for i, output in enumerate(outputs):
|
| 225 |
+
response = self.tokenizer.decode(output, skip_special_tokens=True)
|
| 226 |
+
# Remove prompt
|
| 227 |
+
response = response[len(prompts[i]):].strip()
|
| 228 |
+
responses.append(response)
|
| 229 |
+
|
| 230 |
+
return responses
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
def main():
|
| 234 |
+
parser = argparse.ArgumentParser(description="Helion-V1.5-XL Inference")
|
| 235 |
+
parser.add_argument(
|
| 236 |
+
"--model",
|
| 237 |
+
type=str,
|
| 238 |
+
default="DeepXR/Helion-V1.5-XL",
|
| 239 |
+
help="Model name or path"
|
| 240 |
+
)
|
| 241 |
+
parser.add_argument(
|
| 242 |
+
"--prompt",
|
| 243 |
+
type=str,
|
| 244 |
+
required=True,
|
| 245 |
+
help="Input prompt"
|
| 246 |
+
)
|
| 247 |
+
parser.add_argument(
|
| 248 |
+
"--max-tokens",
|
| 249 |
+
type=int,
|
| 250 |
+
default=512,
|
| 251 |
+
help="Maximum tokens to generate"
|
| 252 |
+
)
|
| 253 |
+
parser.add_argument(
|
| 254 |
+
"--temperature",
|
| 255 |
+
type=float,
|
| 256 |
+
default=0.7,
|
| 257 |
+
help="Sampling temperature"
|
| 258 |
+
)
|
| 259 |
+
parser.add_argument(
|
| 260 |
+
"--top-p",
|
| 261 |
+
type=float,
|
| 262 |
+
default=0.9,
|
| 263 |
+
help="Nucleus sampling threshold"
|
| 264 |
+
)
|
| 265 |
+
parser.add_argument(
|
| 266 |
+
"--load-in-4bit",
|
| 267 |
+
action="store_true",
|
| 268 |
+
help="Load model in 4-bit quantization"
|
| 269 |
+
)
|
| 270 |
+
parser.add_argument(
|
| 271 |
+
"--load-in-8bit",
|
| 272 |
+
action="store_true",
|
| 273 |
+
help="Load model in 8-bit quantization"
|
| 274 |
+
)
|
| 275 |
+
parser.add_argument(
|
| 276 |
+
"--chat-mode",
|
| 277 |
+
action="store_true",
|
| 278 |
+
help="Use chat format"
|
| 279 |
+
)
|
| 280 |
+
|
| 281 |
+
args = parser.parse_args()
|
| 282 |
+
|
| 283 |
+
# Initialize model
|
| 284 |
+
inference = HelionInference(
|
| 285 |
+
model_name=args.model,
|
| 286 |
+
load_in_4bit=args.load_in_4bit,
|
| 287 |
+
load_in_8bit=args.load_in_8bit
|
| 288 |
+
)
|
| 289 |
+
|
| 290 |
+
# Generate response
|
| 291 |
+
if args.chat_mode:
|
| 292 |
+
messages = [
|
| 293 |
+
{"role": "user", "content": args.prompt}
|
| 294 |
+
]
|
| 295 |
+
response = inference.chat(
|
| 296 |
+
messages,
|
| 297 |
+
max_new_tokens=args.max_tokens,
|
| 298 |
+
temperature=args.temperature,
|
| 299 |
+
top_p=args.top_p
|
| 300 |
+
)
|
| 301 |
+
else:
|
| 302 |
+
responses = inference.generate(
|
| 303 |
+
args.prompt,
|
| 304 |
+
max_new_tokens=args.max_tokens,
|
| 305 |
+
temperature=args.temperature,
|
| 306 |
+
top_p=args.top_p
|
| 307 |
+
)
|
| 308 |
+
response = responses[0]
|
| 309 |
+
|
| 310 |
+
print("\n" + "="*80)
|
| 311 |
+
print("PROMPT:")
|
| 312 |
+
print("="*80)
|
| 313 |
+
print(args.prompt)
|
| 314 |
+
print("\n" + "="*80)
|
| 315 |
+
print("RESPONSE:")
|
| 316 |
+
print("="*80)
|
| 317 |
+
print(response)
|
| 318 |
+
print("="*80)
|
| 319 |
+
|
| 320 |
+
|
| 321 |
+
if __name__ == "__main__":
|
| 322 |
+
main()
|