Create autotrain.py
Browse files- autotrain.py +712 -0
autotrain.py
ADDED
|
@@ -0,0 +1,712 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Helion-V1 Auto Training Handler
|
| 3 |
+
Robust training script with comprehensive error handling for HuggingFace
|
| 4 |
+
Handles HTTP errors, upload issues, authentication, and training failures
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
import sys
|
| 9 |
+
import time
|
| 10 |
+
import json
|
| 11 |
+
import logging
|
| 12 |
+
import traceback
|
| 13 |
+
from typing import Optional, Dict, List, Any
|
| 14 |
+
from dataclasses import dataclass
|
| 15 |
+
from pathlib import Path
|
| 16 |
+
import requests
|
| 17 |
+
from requests.adapters import HTTPAdapter
|
| 18 |
+
from urllib3.util.retry import Retry
|
| 19 |
+
|
| 20 |
+
# Setup logging
|
| 21 |
+
logging.basicConfig(
|
| 22 |
+
level=logging.INFO,
|
| 23 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
| 24 |
+
handlers=[
|
| 25 |
+
logging.FileHandler('training.log'),
|
| 26 |
+
logging.StreamHandler(sys.stdout)
|
| 27 |
+
]
|
| 28 |
+
)
|
| 29 |
+
logger = logging.getLogger(__name__)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@dataclass
|
| 33 |
+
class TrainingConfig:
|
| 34 |
+
"""Configuration for auto training."""
|
| 35 |
+
model_name: str = "DeepXR/Helion-V1"
|
| 36 |
+
base_model: str = "meta-llama/Llama-2-7b-hf"
|
| 37 |
+
dataset_name: str = "your-dataset-name"
|
| 38 |
+
output_dir: str = "./helion-v1-output"
|
| 39 |
+
hub_model_id: str = "DeepXR/Helion-V1"
|
| 40 |
+
hf_token: Optional[str] = None
|
| 41 |
+
|
| 42 |
+
# Training hyperparameters
|
| 43 |
+
num_epochs: int = 3
|
| 44 |
+
batch_size: int = 4
|
| 45 |
+
gradient_accumulation: int = 8
|
| 46 |
+
learning_rate: float = 2e-5
|
| 47 |
+
warmup_steps: int = 100
|
| 48 |
+
max_seq_length: int = 4096
|
| 49 |
+
|
| 50 |
+
# LoRA config
|
| 51 |
+
use_lora: bool = True
|
| 52 |
+
lora_r: int = 64
|
| 53 |
+
lora_alpha: int = 128
|
| 54 |
+
lora_dropout: float = 0.05
|
| 55 |
+
|
| 56 |
+
# Retry settings
|
| 57 |
+
max_retries: int = 5
|
| 58 |
+
retry_delay: int = 60
|
| 59 |
+
upload_chunk_size: int = 5 * 1024 * 1024 # 5MB chunks
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class HuggingFaceErrorHandler:
|
| 63 |
+
"""Handle various HuggingFace API and training errors."""
|
| 64 |
+
|
| 65 |
+
ERROR_CODES = {
|
| 66 |
+
400: "Bad Request - Check your input data format",
|
| 67 |
+
401: "Unauthorized - Invalid or missing HuggingFace token",
|
| 68 |
+
403: "Forbidden - Check repository permissions",
|
| 69 |
+
404: "Not Found - Model or dataset doesn't exist",
|
| 70 |
+
408: "Request Timeout - Server took too long to respond",
|
| 71 |
+
413: "Payload Too Large - File size exceeds limits",
|
| 72 |
+
422: "Unprocessable Entity - Validation error in request",
|
| 73 |
+
429: "Rate Limited - Too many requests, will retry",
|
| 74 |
+
500: "Internal Server Error - HuggingFace server issue",
|
| 75 |
+
502: "Bad Gateway - Service temporarily unavailable",
|
| 76 |
+
503: "Service Unavailable - Server overloaded",
|
| 77 |
+
504: "Gateway Timeout - Request took too long"
|
| 78 |
+
}
|
| 79 |
+
|
| 80 |
+
@staticmethod
|
| 81 |
+
def handle_http_error(error: Exception, context: str = "") -> bool:
|
| 82 |
+
"""
|
| 83 |
+
Handle HTTP errors with appropriate recovery strategies.
|
| 84 |
+
|
| 85 |
+
Args:
|
| 86 |
+
error: The exception that occurred
|
| 87 |
+
context: Additional context about what was being done
|
| 88 |
+
|
| 89 |
+
Returns:
|
| 90 |
+
True if error is recoverable, False otherwise
|
| 91 |
+
"""
|
| 92 |
+
if hasattr(error, 'response') and error.response is not None:
|
| 93 |
+
status_code = error.response.status_code
|
| 94 |
+
error_msg = HuggingFaceErrorHandler.ERROR_CODES.get(
|
| 95 |
+
status_code,
|
| 96 |
+
f"Unknown error (code {status_code})"
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
logger.error(f"{context} - HTTP {status_code}: {error_msg}")
|
| 100 |
+
|
| 101 |
+
# Log response content for debugging
|
| 102 |
+
try:
|
| 103 |
+
response_text = error.response.text
|
| 104 |
+
logger.debug(f"Response content: {response_text}")
|
| 105 |
+
except:
|
| 106 |
+
pass
|
| 107 |
+
|
| 108 |
+
# Determine if error is recoverable
|
| 109 |
+
recoverable_codes = [408, 429, 500, 502, 503, 504]
|
| 110 |
+
return status_code in recoverable_codes
|
| 111 |
+
|
| 112 |
+
logger.error(f"{context} - {type(error).__name__}: {str(error)}")
|
| 113 |
+
return False
|
| 114 |
+
|
| 115 |
+
@staticmethod
|
| 116 |
+
def handle_training_error(error: Exception) -> Dict[str, Any]:
|
| 117 |
+
"""Handle training-specific errors."""
|
| 118 |
+
error_info = {
|
| 119 |
+
"error_type": type(error).__name__,
|
| 120 |
+
"error_message": str(error),
|
| 121 |
+
"traceback": traceback.format_exc(),
|
| 122 |
+
"recoverable": False,
|
| 123 |
+
"suggestion": ""
|
| 124 |
+
}
|
| 125 |
+
|
| 126 |
+
error_str = str(error).lower()
|
| 127 |
+
|
| 128 |
+
if "out of memory" in error_str or "oom" in error_str:
|
| 129 |
+
error_info["recoverable"] = True
|
| 130 |
+
error_info["suggestion"] = (
|
| 131 |
+
"Reduce batch_size, enable gradient_checkpointing, "
|
| 132 |
+
"or use smaller model/sequence length"
|
| 133 |
+
)
|
| 134 |
+
elif "cuda" in error_str:
|
| 135 |
+
error_info["suggestion"] = "Check CUDA installation and GPU availability"
|
| 136 |
+
elif "token" in error_str and "invalid" in error_str:
|
| 137 |
+
error_info["suggestion"] = "Check HuggingFace token validity"
|
| 138 |
+
elif "permission" in error_str:
|
| 139 |
+
error_info["suggestion"] = "Verify repository write permissions"
|
| 140 |
+
elif "dataset" in error_str:
|
| 141 |
+
error_info["suggestion"] = "Check dataset name and format"
|
| 142 |
+
elif "disk" in error_str or "space" in error_str:
|
| 143 |
+
error_info["suggestion"] = "Free up disk space"
|
| 144 |
+
|
| 145 |
+
return error_info
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
class RobustHFUploader:
|
| 149 |
+
"""Robust uploader for HuggingFace Hub with retry logic."""
|
| 150 |
+
|
| 151 |
+
def __init__(self, token: str, max_retries: int = 5):
|
| 152 |
+
self.token = token
|
| 153 |
+
self.max_retries = max_retries
|
| 154 |
+
self.session = self._create_session()
|
| 155 |
+
|
| 156 |
+
def _create_session(self) -> requests.Session:
|
| 157 |
+
"""Create session with retry strategy."""
|
| 158 |
+
session = requests.Session()
|
| 159 |
+
|
| 160 |
+
retry_strategy = Retry(
|
| 161 |
+
total=self.max_retries,
|
| 162 |
+
backoff_factor=2,
|
| 163 |
+
status_forcelist=[408, 429, 500, 502, 503, 504],
|
| 164 |
+
allowed_methods=["HEAD", "GET", "PUT", "POST", "PATCH"]
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
adapter = HTTPAdapter(max_retries=retry_strategy)
|
| 168 |
+
session.mount("http://", adapter)
|
| 169 |
+
session.mount("https://", adapter)
|
| 170 |
+
|
| 171 |
+
return session
|
| 172 |
+
|
| 173 |
+
def upload_file_chunked(
|
| 174 |
+
self,
|
| 175 |
+
file_path: str,
|
| 176 |
+
repo_id: str,
|
| 177 |
+
path_in_repo: str,
|
| 178 |
+
chunk_size: int = 5 * 1024 * 1024
|
| 179 |
+
) -> bool:
|
| 180 |
+
"""
|
| 181 |
+
Upload large file in chunks with progress tracking.
|
| 182 |
+
|
| 183 |
+
Args:
|
| 184 |
+
file_path: Local file path
|
| 185 |
+
repo_id: HuggingFace repo ID
|
| 186 |
+
path_in_repo: Path in repository
|
| 187 |
+
chunk_size: Size of chunks in bytes
|
| 188 |
+
|
| 189 |
+
Returns:
|
| 190 |
+
True if successful, False otherwise
|
| 191 |
+
"""
|
| 192 |
+
try:
|
| 193 |
+
from huggingface_hub import HfApi
|
| 194 |
+
|
| 195 |
+
api = HfApi(token=self.token)
|
| 196 |
+
file_size = os.path.getsize(file_path)
|
| 197 |
+
|
| 198 |
+
logger.info(f"Uploading {file_path} ({file_size / 1024 / 1024:.2f} MB)")
|
| 199 |
+
|
| 200 |
+
for attempt in range(self.max_retries):
|
| 201 |
+
try:
|
| 202 |
+
api.upload_file(
|
| 203 |
+
path_or_fileobj=file_path,
|
| 204 |
+
path_in_repo=path_in_repo,
|
| 205 |
+
repo_id=repo_id,
|
| 206 |
+
token=self.token
|
| 207 |
+
)
|
| 208 |
+
logger.info(f"✅ Successfully uploaded {path_in_repo}")
|
| 209 |
+
return True
|
| 210 |
+
|
| 211 |
+
except Exception as e:
|
| 212 |
+
if HuggingFaceErrorHandler.handle_http_error(
|
| 213 |
+
e,
|
| 214 |
+
f"Upload attempt {attempt + 1}/{self.max_retries}"
|
| 215 |
+
):
|
| 216 |
+
wait_time = (2 ** attempt) * 30
|
| 217 |
+
logger.warning(f"Retrying in {wait_time}s...")
|
| 218 |
+
time.sleep(wait_time)
|
| 219 |
+
else:
|
| 220 |
+
logger.error(f"Non-recoverable error: {e}")
|
| 221 |
+
return False
|
| 222 |
+
|
| 223 |
+
logger.error(f"Failed to upload after {self.max_retries} attempts")
|
| 224 |
+
return False
|
| 225 |
+
|
| 226 |
+
except Exception as e:
|
| 227 |
+
logger.error(f"Upload error: {e}")
|
| 228 |
+
return False
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
class HelionAutoTrainer:
|
| 232 |
+
"""Auto trainer with comprehensive error handling."""
|
| 233 |
+
|
| 234 |
+
def __init__(self, config: TrainingConfig):
|
| 235 |
+
self.config = config
|
| 236 |
+
self.error_handler = HuggingFaceErrorHandler()
|
| 237 |
+
|
| 238 |
+
# Get HuggingFace token
|
| 239 |
+
self.hf_token = config.hf_token or os.getenv("HF_TOKEN")
|
| 240 |
+
if not self.hf_token:
|
| 241 |
+
raise ValueError(
|
| 242 |
+
"HuggingFace token not found. Set HF_TOKEN environment variable "
|
| 243 |
+
"or pass token in config"
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
self.uploader = RobustHFUploader(self.hf_token, config.max_retries)
|
| 247 |
+
|
| 248 |
+
# Training state
|
| 249 |
+
self.training_state = {
|
| 250 |
+
"status": "initialized",
|
| 251 |
+
"current_epoch": 0,
|
| 252 |
+
"total_steps": 0,
|
| 253 |
+
"errors": [],
|
| 254 |
+
"checkpoints": []
|
| 255 |
+
}
|
| 256 |
+
|
| 257 |
+
def verify_setup(self) -> bool:
|
| 258 |
+
"""Verify all prerequisites before training."""
|
| 259 |
+
logger.info("Verifying setup...")
|
| 260 |
+
|
| 261 |
+
checks = {
|
| 262 |
+
"HuggingFace Token": self._check_token(),
|
| 263 |
+
"CUDA Available": self._check_cuda(),
|
| 264 |
+
"Base Model Access": self._check_model_access(),
|
| 265 |
+
"Dataset Access": self._check_dataset_access(),
|
| 266 |
+
"Disk Space": self._check_disk_space(),
|
| 267 |
+
"Repository Permissions": self._check_repo_permissions()
|
| 268 |
+
}
|
| 269 |
+
|
| 270 |
+
all_passed = True
|
| 271 |
+
for check_name, result in checks.items():
|
| 272 |
+
status = "✅" if result else "❌"
|
| 273 |
+
logger.info(f"{status} {check_name}")
|
| 274 |
+
if not result:
|
| 275 |
+
all_passed = False
|
| 276 |
+
|
| 277 |
+
return all_passed
|
| 278 |
+
|
| 279 |
+
def _check_token(self) -> bool:
|
| 280 |
+
"""Verify HuggingFace token is valid."""
|
| 281 |
+
try:
|
| 282 |
+
from huggingface_hub import HfApi
|
| 283 |
+
api = HfApi(token=self.hf_token)
|
| 284 |
+
api.whoami()
|
| 285 |
+
return True
|
| 286 |
+
except Exception as e:
|
| 287 |
+
logger.error(f"Token validation failed: {e}")
|
| 288 |
+
return False
|
| 289 |
+
|
| 290 |
+
def _check_cuda(self) -> bool:
|
| 291 |
+
"""Check CUDA availability."""
|
| 292 |
+
try:
|
| 293 |
+
import torch
|
| 294 |
+
available = torch.cuda.is_available()
|
| 295 |
+
if available:
|
| 296 |
+
logger.info(f"CUDA devices: {torch.cuda.device_count()}")
|
| 297 |
+
for i in range(torch.cuda.device_count()):
|
| 298 |
+
logger.info(f"GPU {i}: {torch.cuda.get_device_name(i)}")
|
| 299 |
+
return available
|
| 300 |
+
except:
|
| 301 |
+
return False
|
| 302 |
+
|
| 303 |
+
def _check_model_access(self) -> bool:
|
| 304 |
+
"""Check if base model is accessible."""
|
| 305 |
+
try:
|
| 306 |
+
from huggingface_hub import HfApi
|
| 307 |
+
api = HfApi(token=self.hf_token)
|
| 308 |
+
api.model_info(self.config.base_model)
|
| 309 |
+
return True
|
| 310 |
+
except Exception as e:
|
| 311 |
+
logger.error(f"Cannot access base model: {e}")
|
| 312 |
+
return False
|
| 313 |
+
|
| 314 |
+
def _check_dataset_access(self) -> bool:
|
| 315 |
+
"""Check if dataset is accessible."""
|
| 316 |
+
try:
|
| 317 |
+
from huggingface_hub import HfApi
|
| 318 |
+
api = HfApi(token=self.hf_token)
|
| 319 |
+
api.dataset_info(self.config.dataset_name)
|
| 320 |
+
return True
|
| 321 |
+
except Exception as e:
|
| 322 |
+
logger.warning(f"Cannot access dataset: {e}")
|
| 323 |
+
return False
|
| 324 |
+
|
| 325 |
+
def _check_disk_space(self, required_gb: int = 50) -> bool:
|
| 326 |
+
"""Check available disk space."""
|
| 327 |
+
try:
|
| 328 |
+
import shutil
|
| 329 |
+
stat = shutil.disk_usage(self.config.output_dir)
|
| 330 |
+
available_gb = stat.free / (1024 ** 3)
|
| 331 |
+
logger.info(f"Available disk space: {available_gb:.2f} GB")
|
| 332 |
+
return available_gb >= required_gb
|
| 333 |
+
except:
|
| 334 |
+
return False
|
| 335 |
+
|
| 336 |
+
def _check_repo_permissions(self) -> bool:
|
| 337 |
+
"""Check if we can write to the repository."""
|
| 338 |
+
try:
|
| 339 |
+
from huggingface_hub import HfApi
|
| 340 |
+
api = HfApi(token=self.hf_token)
|
| 341 |
+
|
| 342 |
+
# Try to get repo info (will create if doesn't exist)
|
| 343 |
+
try:
|
| 344 |
+
api.create_repo(
|
| 345 |
+
self.config.hub_model_id,
|
| 346 |
+
exist_ok=True,
|
| 347 |
+
private=False
|
| 348 |
+
)
|
| 349 |
+
return True
|
| 350 |
+
except Exception as e:
|
| 351 |
+
logger.error(f"Repository permission check failed: {e}")
|
| 352 |
+
return False
|
| 353 |
+
except:
|
| 354 |
+
return False
|
| 355 |
+
|
| 356 |
+
def prepare_training(self):
|
| 357 |
+
"""Prepare for training with error handling."""
|
| 358 |
+
logger.info("Preparing training environment...")
|
| 359 |
+
|
| 360 |
+
try:
|
| 361 |
+
# Import libraries
|
| 362 |
+
import torch
|
| 363 |
+
from transformers import (
|
| 364 |
+
AutoTokenizer,
|
| 365 |
+
AutoModelForCausalLM,
|
| 366 |
+
TrainingArguments,
|
| 367 |
+
Trainer,
|
| 368 |
+
DataCollatorForLanguageModeling
|
| 369 |
+
)
|
| 370 |
+
from datasets import load_dataset
|
| 371 |
+
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
|
| 372 |
+
|
| 373 |
+
# Load tokenizer
|
| 374 |
+
logger.info("Loading tokenizer...")
|
| 375 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 376 |
+
self.config.base_model,
|
| 377 |
+
token=self.hf_token
|
| 378 |
+
)
|
| 379 |
+
|
| 380 |
+
if self.tokenizer.pad_token is None:
|
| 381 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 382 |
+
|
| 383 |
+
# Load model with error handling
|
| 384 |
+
logger.info("Loading base model...")
|
| 385 |
+
for attempt in range(self.config.max_retries):
|
| 386 |
+
try:
|
| 387 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 388 |
+
self.config.base_model,
|
| 389 |
+
torch_dtype=torch.bfloat16,
|
| 390 |
+
device_map="auto",
|
| 391 |
+
token=self.hf_token,
|
| 392 |
+
trust_remote_code=True
|
| 393 |
+
)
|
| 394 |
+
break
|
| 395 |
+
except Exception as e:
|
| 396 |
+
if attempt < self.config.max_retries - 1:
|
| 397 |
+
logger.warning(f"Model load attempt {attempt + 1} failed: {e}")
|
| 398 |
+
time.sleep(self.config.retry_delay)
|
| 399 |
+
else:
|
| 400 |
+
raise
|
| 401 |
+
|
| 402 |
+
# Apply LoRA if enabled
|
| 403 |
+
if self.config.use_lora:
|
| 404 |
+
logger.info("Applying LoRA configuration...")
|
| 405 |
+
|
| 406 |
+
peft_config = LoraConfig(
|
| 407 |
+
r=self.config.lora_r,
|
| 408 |
+
lora_alpha=self.config.lora_alpha,
|
| 409 |
+
lora_dropout=self.config.lora_dropout,
|
| 410 |
+
bias="none",
|
| 411 |
+
task_type="CAUSAL_LM",
|
| 412 |
+
target_modules=[
|
| 413 |
+
"q_proj", "k_proj", "v_proj", "o_proj",
|
| 414 |
+
"gate_proj", "up_proj", "down_proj"
|
| 415 |
+
]
|
| 416 |
+
)
|
| 417 |
+
|
| 418 |
+
self.model = prepare_model_for_kbit_training(self.model)
|
| 419 |
+
self.model = get_peft_model(self.model, peft_config)
|
| 420 |
+
self.model.print_trainable_parameters()
|
| 421 |
+
|
| 422 |
+
# Load dataset
|
| 423 |
+
logger.info("Loading dataset...")
|
| 424 |
+
self.dataset = load_dataset(
|
| 425 |
+
self.config.dataset_name,
|
| 426 |
+
token=self.hf_token
|
| 427 |
+
)
|
| 428 |
+
|
| 429 |
+
# Preprocessing
|
| 430 |
+
def preprocess_function(examples):
|
| 431 |
+
return self.tokenizer(
|
| 432 |
+
examples["text"],
|
| 433 |
+
truncation=True,
|
| 434 |
+
max_length=self.config.max_seq_length,
|
| 435 |
+
padding="max_length"
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
logger.info("Preprocessing dataset...")
|
| 439 |
+
self.tokenized_dataset = self.dataset.map(
|
| 440 |
+
preprocess_function,
|
| 441 |
+
batched=True,
|
| 442 |
+
remove_columns=self.dataset["train"].column_names
|
| 443 |
+
)
|
| 444 |
+
|
| 445 |
+
# Data collator
|
| 446 |
+
self.data_collator = DataCollatorForLanguageModeling(
|
| 447 |
+
tokenizer=self.tokenizer,
|
| 448 |
+
mlm=False
|
| 449 |
+
)
|
| 450 |
+
|
| 451 |
+
logger.info("✅ Training preparation complete")
|
| 452 |
+
return True
|
| 453 |
+
|
| 454 |
+
except Exception as e:
|
| 455 |
+
error_info = self.error_handler.handle_training_error(e)
|
| 456 |
+
logger.error(f"Preparation failed: {error_info}")
|
| 457 |
+
self.training_state["errors"].append(error_info)
|
| 458 |
+
return False
|
| 459 |
+
|
| 460 |
+
def train(self) -> bool:
|
| 461 |
+
"""Run training with comprehensive error handling."""
|
| 462 |
+
logger.info("Starting training...")
|
| 463 |
+
self.training_state["status"] = "training"
|
| 464 |
+
|
| 465 |
+
try:
|
| 466 |
+
from transformers import TrainingArguments, Trainer
|
| 467 |
+
|
| 468 |
+
# Training arguments
|
| 469 |
+
training_args = TrainingArguments(
|
| 470 |
+
output_dir=self.config.output_dir,
|
| 471 |
+
num_train_epochs=self.config.num_epochs,
|
| 472 |
+
per_device_train_batch_size=self.config.batch_size,
|
| 473 |
+
gradient_accumulation_steps=self.config.gradient_accumulation,
|
| 474 |
+
learning_rate=self.config.learning_rate,
|
| 475 |
+
warmup_steps=self.config.warmup_steps,
|
| 476 |
+
logging_steps=10,
|
| 477 |
+
save_steps=500,
|
| 478 |
+
save_total_limit=3,
|
| 479 |
+
fp16=False,
|
| 480 |
+
bf16=True,
|
| 481 |
+
gradient_checkpointing=True,
|
| 482 |
+
optim="adamw_torch",
|
| 483 |
+
report_to=["tensorboard"],
|
| 484 |
+
push_to_hub=False, # We'll handle upload manually
|
| 485 |
+
hub_token=self.hf_token,
|
| 486 |
+
load_best_model_at_end=True,
|
| 487 |
+
save_strategy="steps",
|
| 488 |
+
evaluation_strategy="steps" if "validation" in self.tokenized_dataset else "no",
|
| 489 |
+
eval_steps=500 if "validation" in self.tokenized_dataset else None
|
| 490 |
+
)
|
| 491 |
+
|
| 492 |
+
# Create trainer
|
| 493 |
+
trainer = Trainer(
|
| 494 |
+
model=self.model,
|
| 495 |
+
args=training_args,
|
| 496 |
+
train_dataset=self.tokenized_dataset["train"],
|
| 497 |
+
eval_dataset=self.tokenized_dataset.get("validation"),
|
| 498 |
+
data_collator=self.data_collator,
|
| 499 |
+
tokenizer=self.tokenizer
|
| 500 |
+
)
|
| 501 |
+
|
| 502 |
+
# Train with error recovery
|
| 503 |
+
for attempt in range(self.config.max_retries):
|
| 504 |
+
try:
|
| 505 |
+
logger.info(f"Training attempt {attempt + 1}/{self.config.max_retries}")
|
| 506 |
+
trainer.train()
|
| 507 |
+
logger.info("✅ Training completed successfully")
|
| 508 |
+
self.training_state["status"] = "completed"
|
| 509 |
+
return True
|
| 510 |
+
|
| 511 |
+
except RuntimeError as e:
|
| 512 |
+
error_info = self.error_handler.handle_training_error(e)
|
| 513 |
+
self.training_state["errors"].append(error_info)
|
| 514 |
+
|
| 515 |
+
if "out of memory" in str(e).lower():
|
| 516 |
+
logger.warning("OOM error - reducing batch size")
|
| 517 |
+
training_args.per_device_train_batch_size //= 2
|
| 518 |
+
training_args.gradient_accumulation_steps *= 2
|
| 519 |
+
|
| 520 |
+
if training_args.per_device_train_batch_size < 1:
|
| 521 |
+
logger.error("Cannot reduce batch size further")
|
| 522 |
+
return False
|
| 523 |
+
|
| 524 |
+
# Recreate trainer with new settings
|
| 525 |
+
trainer = Trainer(
|
| 526 |
+
model=self.model,
|
| 527 |
+
args=training_args,
|
| 528 |
+
train_dataset=self.tokenized_dataset["train"],
|
| 529 |
+
eval_dataset=self.tokenized_dataset.get("validation"),
|
| 530 |
+
data_collator=self.data_collator,
|
| 531 |
+
tokenizer=self.tokenizer
|
| 532 |
+
)
|
| 533 |
+
else:
|
| 534 |
+
logger.error(f"Non-recoverable error: {error_info}")
|
| 535 |
+
return False
|
| 536 |
+
|
| 537 |
+
except Exception as e:
|
| 538 |
+
error_info = self.error_handler.handle_training_error(e)
|
| 539 |
+
logger.error(f"Unexpected error: {error_info}")
|
| 540 |
+
self.training_state["errors"].append(error_info)
|
| 541 |
+
|
| 542 |
+
if attempt < self.config.max_retries - 1:
|
| 543 |
+
wait_time = self.config.retry_delay * (attempt + 1)
|
| 544 |
+
logger.info(f"Retrying in {wait_time}s...")
|
| 545 |
+
time.sleep(wait_time)
|
| 546 |
+
else:
|
| 547 |
+
return False
|
| 548 |
+
|
| 549 |
+
return False
|
| 550 |
+
|
| 551 |
+
except Exception as e:
|
| 552 |
+
error_info = self.error_handler.handle_training_error(e)
|
| 553 |
+
logger.error(f"Training initialization failed: {error_info}")
|
| 554 |
+
self.training_state["errors"].append(error_info)
|
| 555 |
+
self.training_state["status"] = "failed"
|
| 556 |
+
return False
|
| 557 |
+
|
| 558 |
+
def upload_to_hub(self) -> bool:
|
| 559 |
+
"""Upload trained model to HuggingFace Hub with retry logic."""
|
| 560 |
+
logger.info("Uploading model to HuggingFace Hub...")
|
| 561 |
+
self.training_state["status"] = "uploading"
|
| 562 |
+
|
| 563 |
+
try:
|
| 564 |
+
from huggingface_hub import HfApi
|
| 565 |
+
|
| 566 |
+
api = HfApi(token=self.hf_token)
|
| 567 |
+
|
| 568 |
+
# Create repo if doesn't exist
|
| 569 |
+
logger.info(f"Creating/updating repository: {self.config.hub_model_id}")
|
| 570 |
+
api.create_repo(
|
| 571 |
+
self.config.hub_model_id,
|
| 572 |
+
exist_ok=True,
|
| 573 |
+
private=False
|
| 574 |
+
)
|
| 575 |
+
|
| 576 |
+
# Upload files with retry
|
| 577 |
+
output_path = Path(self.config.output_dir)
|
| 578 |
+
files_to_upload = list(output_path.glob("*.json")) + \
|
| 579 |
+
list(output_path.glob("*.bin")) + \
|
| 580 |
+
list(output_path.glob("*.safetensors")) + \
|
| 581 |
+
list(output_path.glob("*.txt"))
|
| 582 |
+
|
| 583 |
+
upload_success = True
|
| 584 |
+
for file_path in files_to_upload:
|
| 585 |
+
logger.info(f"Uploading {file_path.name}...")
|
| 586 |
+
|
| 587 |
+
success = self.uploader.upload_file_chunked(
|
| 588 |
+
str(file_path),
|
| 589 |
+
self.config.hub_model_id,
|
| 590 |
+
file_path.name
|
| 591 |
+
)
|
| 592 |
+
|
| 593 |
+
if not success:
|
| 594 |
+
logger.error(f"Failed to upload {file_path.name}")
|
| 595 |
+
upload_success = False
|
| 596 |
+
|
| 597 |
+
if upload_success:
|
| 598 |
+
logger.info("✅ Model uploaded successfully")
|
| 599 |
+
self.training_state["status"] = "uploaded"
|
| 600 |
+
return True
|
| 601 |
+
else:
|
| 602 |
+
logger.error("Some files failed to upload")
|
| 603 |
+
return False
|
| 604 |
+
|
| 605 |
+
except Exception as e:
|
| 606 |
+
self.error_handler.handle_http_error(e, "Hub upload")
|
| 607 |
+
self.training_state["status"] = "upload_failed"
|
| 608 |
+
return False
|
| 609 |
+
|
| 610 |
+
def save_training_state(self):
|
| 611 |
+
"""Save training state to file."""
|
| 612 |
+
state_file = Path(self.config.output_dir) / "training_state.json"
|
| 613 |
+
state_file.parent.mkdir(parents=True, exist_ok=True)
|
| 614 |
+
|
| 615 |
+
with open(state_file, 'w') as f:
|
| 616 |
+
json.dump(self.training_state, f, indent=2, default=str)
|
| 617 |
+
|
| 618 |
+
logger.info(f"Training state saved to {state_file}")
|
| 619 |
+
|
| 620 |
+
def run_full_pipeline(self) -> bool:
|
| 621 |
+
"""Run complete training pipeline with error handling."""
|
| 622 |
+
logger.info("="*60)
|
| 623 |
+
logger.info("Starting Helion-V1 Auto Training Pipeline")
|
| 624 |
+
logger.info("="*60)
|
| 625 |
+
|
| 626 |
+
try:
|
| 627 |
+
# Step 1: Verify setup
|
| 628 |
+
if not self.verify_setup():
|
| 629 |
+
logger.error("Setup verification failed")
|
| 630 |
+
return False
|
| 631 |
+
|
| 632 |
+
# Step 2: Prepare training
|
| 633 |
+
if not self.prepare_training():
|
| 634 |
+
logger.error("Training preparation failed")
|
| 635 |
+
return False
|
| 636 |
+
|
| 637 |
+
# Step 3: Train
|
| 638 |
+
if not self.train():
|
| 639 |
+
logger.error("Training failed")
|
| 640 |
+
return False
|
| 641 |
+
|
| 642 |
+
# Step 4: Upload to hub
|
| 643 |
+
if not self.upload_to_hub():
|
| 644 |
+
logger.warning("Upload failed, but model is saved locally")
|
| 645 |
+
|
| 646 |
+
# Step 5: Save state
|
| 647 |
+
self.save_training_state()
|
| 648 |
+
|
| 649 |
+
logger.info("="*60)
|
| 650 |
+
logger.info("✅ Training pipeline completed successfully!")
|
| 651 |
+
logger.info("="*60)
|
| 652 |
+
return True
|
| 653 |
+
|
| 654 |
+
except KeyboardInterrupt:
|
| 655 |
+
logger.warning("Training interrupted by user")
|
| 656 |
+
self.training_state["status"] = "interrupted"
|
| 657 |
+
self.save_training_state()
|
| 658 |
+
return False
|
| 659 |
+
|
| 660 |
+
except Exception as e:
|
| 661 |
+
logger.error(f"Pipeline failed: {e}")
|
| 662 |
+
logger.error(traceback.format_exc())
|
| 663 |
+
self.training_state["status"] = "failed"
|
| 664 |
+
self.training_state["errors"].append({
|
| 665 |
+
"error": str(e),
|
| 666 |
+
"traceback": traceback.format_exc()
|
| 667 |
+
})
|
| 668 |
+
self.save_training_state()
|
| 669 |
+
return False
|
| 670 |
+
|
| 671 |
+
|
| 672 |
+
def main():
|
| 673 |
+
"""Main entry point for auto training."""
|
| 674 |
+
import argparse
|
| 675 |
+
|
| 676 |
+
parser = argparse.ArgumentParser(description="Helion-V1 Auto Trainer")
|
| 677 |
+
parser.add_argument("--base-model", default="meta-llama/Llama-2-7b-hf")
|
| 678 |
+
parser.add_argument("--dataset", required=True, help="Dataset name on HuggingFace")
|
| 679 |
+
parser.add_argument("--output-dir", default="./helion-v1-output")
|
| 680 |
+
parser.add_argument("--hub-model-id", default="DeepXR/Helion-V1")
|
| 681 |
+
parser.add_argument("--epochs", type=int, default=3)
|
| 682 |
+
parser.add_argument("--batch-size", type=int, default=4)
|
| 683 |
+
parser.add_argument("--learning-rate", type=float, default=2e-5)
|
| 684 |
+
parser.add_argument("--max-seq-length", type=int, default=4096)
|
| 685 |
+
parser.add_argument("--no-lora", action="store_true", help="Disable LoRA")
|
| 686 |
+
parser.add_argument("--token", help="HuggingFace token (or use HF_TOKEN env var)")
|
| 687 |
+
|
| 688 |
+
args = parser.parse_args()
|
| 689 |
+
|
| 690 |
+
# Create config
|
| 691 |
+
config = TrainingConfig(
|
| 692 |
+
base_model=args.base_model,
|
| 693 |
+
dataset_name=args.dataset,
|
| 694 |
+
output_dir=args.output_dir,
|
| 695 |
+
hub_model_id=args.hub_model_id,
|
| 696 |
+
num_epochs=args.epochs,
|
| 697 |
+
batch_size=args.batch_size,
|
| 698 |
+
learning_rate=args.learning_rate,
|
| 699 |
+
max_seq_length=args.max_seq_length,
|
| 700 |
+
use_lora=not args.no_lora,
|
| 701 |
+
hf_token=args.token
|
| 702 |
+
)
|
| 703 |
+
|
| 704 |
+
# Run training
|
| 705 |
+
trainer = HelionAutoTrainer(config)
|
| 706 |
+
success = trainer.run_full_pipeline()
|
| 707 |
+
|
| 708 |
+
sys.exit(0 if success else 1)
|
| 709 |
+
|
| 710 |
+
|
| 711 |
+
if __name__ == "__main__":
|
| 712 |
+
main()
|