---
license: apache-2.0
language:
- en
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- embeddings
- text-embeddings
library_name: sentence-transformers
base_model: sentence-transformers/all-MiniLM-L6-v2
---
---
# Helion-V1-Embeddings
Helion-V1-Embeddings is a lightweight text embedding model designed for semantic similarity, search, and retrieval tasks. It converts text into dense vector representations optimized for the Helion ecosystem.
## Model Description
- **Developed by:** DeepXR
- **Model type:** Sentence Transformer / Text Embedding Model
- **Base model:** sentence-transformers/all-MiniLM-L6-v2
- **Language:** English
- **License:** Apache 2.0
- **Embedding Dimension:** 384
- **Max Sequence Length:** 256 tokens
## Intended Use
Helion-V1-Embeddings is designed for:
- Semantic search and information retrieval
- Document similarity comparison
- Clustering and categorization
- Question-answering systems (retrieval component)
- Recommendation systems
- Duplicate detection
### Primary Users
- Developers building search systems
- Data scientists working on NLP tasks
- Applications requiring text similarity
- RAG (Retrieval-Augmented Generation) pipelines
## Key Features
- **Fast Inference**: Optimized for quick embedding generation
- **Compact Size**: Small model footprint (~80MB)
- **Good Performance**: Balanced accuracy and speed
- **Easy Integration**: Compatible with sentence-transformers library
- **Batch Processing**: Efficient for large datasets
## Usage
### Basic Usage
```python
from sentence_transformers import SentenceTransformer
# Load model
model = SentenceTransformer('DeepXR/Helion-V1-embeddings')
# Encode sentences
sentences = [
"How do I reset my password?",
"What is the process for password recovery?",
"I forgot my login credentials"
]
embeddings = model.encode(sentences)
print(embeddings.shape) # (3, 384)
```
### Similarity Search
```python
from sentence_transformers import SentenceTransformer, util
model = SentenceTransformer('DeepXR/Helion-V1-embeddings')
# Encode query and documents
query = "How to train a machine learning model?"
documents = [
"Machine learning training requires data preprocessing",
"The best way to cook pasta is boiling water",
"Neural networks need proper hyperparameter tuning"
]
query_embedding = model.encode(query)
doc_embeddings = model.encode(documents)
# Calculate similarity
similarities = util.cos_sim(query_embedding, doc_embeddings)
print(similarities)
```
### Integration with FAISS
```python
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
model = SentenceTransformer('DeepXR/Helion-V1-embeddings')
# Create embeddings
documents = ["doc1", "doc2", "doc3"]
embeddings = model.encode(documents)
# Create FAISS index
dimension = embeddings.shape[1]
index = faiss.IndexFlatL2(dimension)
index.add(embeddings.astype('float32'))
# Search
query_embedding = model.encode(["search query"])
distances, indices = index.search(query_embedding.astype('float32'), k=3)
```
## Performance
### Benchmark Results
| Task | Score | Notes |
|------|-------|-------|
| STS Benchmark | ~0.78 | Semantic Textual Similarity |
| Retrieval (BEIR) | ~0.42 | Average across datasets |
| Speed (CPU) | ~2000 sentences/sec | Batch size 32 |
| Speed (GPU) | ~15000 sentences/sec | Batch size 128 |
*Note: These are approximate values. Actual performance may vary.*
## Training Details
### Training Data
The model was fine-tuned on:
- Question-answer pairs
- Semantic similarity datasets
- Document-query pairs
- Paraphrase detection examples
### Training Procedure
- **Base Model:** sentence-transformers/all-MiniLM-L6-v2
- **Training Method:** Contrastive learning with cosine similarity
- **Loss Function:** MultipleNegativesRankingLoss
- **Batch Size:** 64
- **Epochs:** 3
- **Pooling:** Mean pooling
## Technical Specifications
### Model Architecture
- **Type:** Transformer-based encoder
- **Layers:** 6
- **Hidden Size:** 384
- **Attention Heads:** 12
- **Parameters:** ~22.7M
- **Pooling Strategy:** Mean pooling
### Input Format
- **Max Length:** 256 tokens
- **Tokenizer:** WordPiece
- **Normalization:** Applied automatically
### Output Format
- **Embedding Dimension:** 384
- **Dtype:** float32
- **Normalization:** L2 normalized (optional)
## Limitations
- **Sequence Length:** Limited to 256 tokens (longer texts are truncated)
- **Language:** Primarily optimized for English
- **Domain:** General-purpose, may need fine-tuning for specialized domains
- **Context:** Does not maintain conversation context across multiple inputs
- **Model Size:** Smaller than state-of-the-art models, trading some accuracy for speed
## Use Cases
### ✅ Good For:
- Semantic search in document collections
- Finding similar questions/answers
- Content recommendation
- Duplicate detection
- Clustering similar documents
- Quick similarity comparisons
### ❌ Not Suitable For:
- Long document encoding (>256 tokens)
- Real-time generation tasks
- Multilingual applications (without fine-tuning)
- Highly specialized domains without adaptation
- Tasks requiring deep reasoning
## Comparison with Other Models
| Model | Dim | Speed | Accuracy | Size |
|-------|-----|-------|----------|------|
| Helion-V1-Embeddings | 384 | Fast | Good | 80MB |
| all-MiniLM-L6-v2 | 384 | Fast | Good | 80MB |
| all-mpnet-base-v2 | 768 | Medium | Better | 420MB |
| text-embedding-ada-002 | 1536 | API | Best | API |
## Ethical Considerations
- **Bias:** May reflect biases present in training data
- **Privacy:** Do not embed sensitive personal information
- **Fairness:** Performance may vary across different text types
- **Use Responsibly:** Consider implications of similarity matching
## Integration Examples
### LangChain Integration
```python
from langchain.embeddings import HuggingFaceEmbeddings
embeddings = HuggingFaceEmbeddings(
model_name="DeepXR/Helion-V1-embeddings"
)
text = "This is a sample document"
embedding = embeddings.embed_query(text)
```
### LlamaIndex Integration
```python
from llama_index.embeddings import HuggingFaceEmbedding
embed_model = HuggingFaceEmbedding(
model_name="DeepXR/Helion-V1-embeddings"
)
embeddings = embed_model.get_text_embedding("Hello world")
```
## Citation
```bibtex
@misc{helion-v1-embeddings,
author = {DeepXR},
title = {Helion-V1-Embeddings: Lightweight Text Embedding Model},
year = {2024},
publisher = {HuggingFace},
url = {https://huggingface.co/DeepXR/Helion-V1-embeddings}
}
```
## Model Card Authors
DeepXR Team
## Contact
- Repository: https://huggingface.co/DeepXR/Helion-V1-embeddings
- Issues: https://huggingface.co/DeepXR/Helion-V1-embeddings/discussions