--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:8301 - loss:BatchAllTripletLoss widget: - source_sentence: 科目:タイル。名称:デッキ床タイル。 sentences: - 科目:ユニット及びその他。名称:プール廻りクッション。 - 科目:ユニット及びその他。名称:P-#ピクトサインB。 - 科目:ユニット及びその他。名称:秘書室カウンター。 - source_sentence: 科目:ユニット及びその他。名称:SKフック。 sentences: - 科目:ユニット及びその他。名称:多目的ホール入口サイン。 - 科目:ユニット及びその他。名称:免震層メッシュフェンス片開き扉。 - 科目:ユニット及びその他。名称:#フロアマップ(壁付)。 - source_sentence: 科目:ユニット及びその他。名称:カーテンレール。 sentences: - 科目:コンクリート。名称:多目的ホール機械式移動座席基礎コンクリート。 - 科目:ユニット及びその他。名称:立下り腰壁ウッドデッキ。 - 科目:ユニット及びその他。名称:便所SKフック。 - source_sentence: 科目:ユニット及びその他。名称:守衛室・議会事務局カウンター上ガラス台。 sentences: - 科目:ユニット及びその他。名称:屋上校庭壁ゴムチップ。 - 科目:ユニット及びその他。名称:#F救急外来受付カウンター。 - 科目:ユニット及びその他。名称:議会事務局カウンター。 - source_sentence: 科目:ユニット及びその他。名称:#Fスタッフステーションカウンター。 sentences: - 科目:ユニット及びその他。名称:La-#触知案内図サイン。 - 科目:ユニット及びその他。名称:デジタルサイネージ。 - 科目:ユニット及びその他。名称:誘導サイン(自立)。 pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Detomo/cl-nagoya-sup-simcse-ja-for-standard-name-v0_9_8") # Run inference sentences = [ '科目:ユニット及びその他。名称:#Fスタッフステーションカウンター。', '科目:ユニット及びその他。名称:誘導サイン(自立)。', '科目:ユニット及びその他。名称:デジタルサイネージ。', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 8,301 training samples * Columns: sentence and label * Approximate statistics based on the first 1000 samples: | | sentence | label | |:--------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | type | string | int | | details | | | * Samples: | sentence | label | |:-----------------------------------------|:---------------| | 科目:コンクリート。名称:免震基礎天端グラウト注入。 | 0 | | 科目:コンクリート。名称:コンクリートポンプ圧送。 | 1 | | 科目:コンクリート。名称:ポンプ圧送。 | 1 | * Loss: [BatchAllTripletLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchalltripletloss) ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 512 - `per_device_eval_batch_size`: 512 - `learning_rate`: 1e-05 - `weight_decay`: 0.01 - `num_train_epochs`: 200 - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: group_by_label #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 512 - `per_device_eval_batch_size`: 512 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 1e-05 - `weight_decay`: 0.01 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 200 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: group_by_label - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | |:--------:|:----:|:-------------:| | 3.6471 | 50 | 0.5866 | | 7.5294 | 100 | 0.4693 | | 11.4118 | 150 | 0.4486 | | 15.2941 | 200 | 0.2783 | | 19.1765 | 250 | 0.2732 | | 23.0588 | 300 | 0.3268 | | 26.7059 | 350 | 0.3403 | | 30.5882 | 400 | 0.1967 | | 34.4706 | 450 | 0.2025 | | 38.3529 | 500 | 0.2108 | | 42.2353 | 550 | 0.1458 | | 46.1176 | 600 | 0.1914 | | 49.7647 | 650 | 0.1065 | | 53.6471 | 700 | 0.0607 | | 57.5294 | 750 | 0.128 | | 61.4118 | 800 | 0.0579 | | 65.2941 | 850 | 0.1695 | | 69.1765 | 900 | 0.1121 | | 73.0588 | 950 | 0.1096 | | 76.7059 | 1000 | 0.1213 | | 80.5882 | 1050 | 0.0485 | | 84.4706 | 1100 | 0.0759 | | 88.3529 | 1150 | 0.0673 | | 92.2353 | 1200 | 0.111 | | 96.1176 | 1250 | 0.0159 | | 99.7647 | 1300 | 0.1044 | | 103.6471 | 1350 | 0.0928 | | 107.5294 | 1400 | 0.0712 | | 111.4118 | 1450 | 0.096 | | 115.2941 | 1500 | 0.0648 | | 119.1765 | 1550 | 0.0534 | | 123.0588 | 1600 | 0.0071 | | 126.7059 | 1650 | 0.0688 | | 130.5882 | 1700 | 0.105 | | 134.4706 | 1750 | 0.0344 | | 138.3529 | 1800 | 0.0543 | | 142.2353 | 1850 | 0.0072 | | 146.1176 | 1900 | 0.0218 | | 149.7647 | 1950 | 0.0203 | | 153.6471 | 2000 | 0.0837 | | 157.5294 | 2050 | 0.0423 | | 161.4118 | 2100 | 0.0457 | | 165.2941 | 2150 | 0.0591 | | 169.1765 | 2200 | 0.0168 | | 173.0588 | 2250 | 0.0234 | | 176.7059 | 2300 | 0.0452 | | 180.5882 | 2350 | 0.031 | | 184.4706 | 2400 | 0.0241 | | 188.3529 | 2450 | 0.0001 | | 192.2353 | 2500 | 0.0427 | | 196.1176 | 2550 | 0.0381 | | 199.7647 | 2600 | 0.0203 | ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 3.4.1 - Transformers: 4.49.0 - PyTorch: 2.6.0+cu124 - Accelerate: 1.5.2 - Datasets: 3.4.1 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### BatchAllTripletLoss ```bibtex @misc{hermans2017defense, title={In Defense of the Triplet Loss for Person Re-Identification}, author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, year={2017}, eprint={1703.07737}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```