Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
base_model:
|
| 4 |
+
- Qwen/Qwen3-Coder-30B-A3B-Instruct
|
| 5 |
+
library_name: transformers
|
| 6 |
+
---
|
| 7 |
+
|
| 8 |
+
# Qwen3-Coder-30B-A3B-Instruct-ScatterMoE
|
| 9 |
+
|
| 10 |
+
Re-packed weights of [Qwen/Qwen3-Coder-30B-A3B-Instruct](https://huggingface.co/Qwen/Qwen3-Coder-30B-A3B-Instruct) using [Charles Goddard](https://huggingface.co/chargoddard)'s remote code implementation of [scattermoe](https://github.com/shawntan/scattermoe), including scripts to convert to and from standard `Qwen3MoeForCausalLM`. Thank you to [intervitens](https://huggingface.co/intervitens) for assistance with memory-efficient conversion scripts!
|
| 11 |
+
|
| 12 |
+
This is intended to be used as a drop-in replacement for efficient training using any `transformers`-based training repository.
|
| 13 |
+
|
| 14 |
+
Optional monkeypatches included for [Liger Kernel](https://github.com/linkedin/Liger-Kernel) and [Cut Cross-Entropy](https://github.com/apple/ml-cross-entropy). Simply rename the relevant modeling file to `modeling_qwen3_shared_moe.py`.
|
| 15 |
+
|
| 16 |
+
## Citations
|
| 17 |
+
|
| 18 |
+
```
|
| 19 |
+
@misc{qwen3technicalreport,
|
| 20 |
+
title={Qwen3 Technical Report},
|
| 21 |
+
author={Qwen Team},
|
| 22 |
+
year={2025},
|
| 23 |
+
eprint={2505.09388},
|
| 24 |
+
archivePrefix={arXiv},
|
| 25 |
+
primaryClass={cs.CL},
|
| 26 |
+
url={https://arxiv.org/abs/2505.09388},
|
| 27 |
+
}
|
| 28 |
+
|
| 29 |
+
@misc{tan2024scatteredmixtureofexpertsimplementation,
|
| 30 |
+
title={Scattered Mixture-of-Experts Implementation},
|
| 31 |
+
author={Shawn Tan and Yikang Shen and Rameswar Panda and Aaron Courville},
|
| 32 |
+
year={2024},
|
| 33 |
+
eprint={2403.08245},
|
| 34 |
+
archivePrefix={arXiv},
|
| 35 |
+
primaryClass={cs.LG},
|
| 36 |
+
url={https://arxiv.org/abs/2403.08245},
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
@misc{hsu2025ligerkernelefficienttriton,
|
| 40 |
+
title={Liger Kernel: Efficient Triton Kernels for LLM Training},
|
| 41 |
+
author={Pin-Lun Hsu and Yun Dai and Vignesh Kothapalli and Qingquan Song and Shao Tang and Siyu Zhu and Steven Shimizu and Shivam Sahni and Haowen Ning and Yanning Chen},
|
| 42 |
+
year={2025},
|
| 43 |
+
eprint={2410.10989},
|
| 44 |
+
archivePrefix={arXiv},
|
| 45 |
+
primaryClass={cs.LG},
|
| 46 |
+
url={https://arxiv.org/abs/2410.10989},
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
@misc{wijmans2025cutlosseslargevocabularylanguage,
|
| 50 |
+
title={Cut Your Losses in Large-Vocabulary Language Models},
|
| 51 |
+
author={Erik Wijmans and Brody Huval and Alexander Hertzberg and Vladlen Koltun and Philipp Krähenbühl},
|
| 52 |
+
year={2025},
|
| 53 |
+
eprint={2411.09009},
|
| 54 |
+
archivePrefix={arXiv},
|
| 55 |
+
primaryClass={cs.LG},
|
| 56 |
+
url={https://arxiv.org/abs/2411.09009},
|
| 57 |
+
}
|
| 58 |
+
```
|