Improve language tag
Browse filesHi! As the model is multilingual, this is a PR to add other languages than English to the language tag to improve the referencing. Note that 29 languages are announced in the README, but only 13 are explicitly listed. I was therefore only able to add these 13 languages.
README.md
CHANGED
|
@@ -1,77 +1,91 @@
|
|
| 1 |
-
---
|
| 2 |
-
base_model:
|
| 3 |
-
- Qwen/Qwen2.5-7B-Instruct
|
| 4 |
-
library_name: transformers
|
| 5 |
-
license: mit
|
| 6 |
-
pipeline_tag: text-generation
|
| 7 |
-
tags:
|
| 8 |
-
- reasoning
|
| 9 |
-
- Zero-RL
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
-
|
| 20 |
-
-
|
| 21 |
-
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
```
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model:
|
| 3 |
+
- Qwen/Qwen2.5-7B-Instruct
|
| 4 |
+
library_name: transformers
|
| 5 |
+
license: mit
|
| 6 |
+
pipeline_tag: text-generation
|
| 7 |
+
tags:
|
| 8 |
+
- reasoning
|
| 9 |
+
- Zero-RL
|
| 10 |
+
language:
|
| 11 |
+
- zho
|
| 12 |
+
- eng
|
| 13 |
+
- fra
|
| 14 |
+
- spa
|
| 15 |
+
- por
|
| 16 |
+
- deu
|
| 17 |
+
- ita
|
| 18 |
+
- rus
|
| 19 |
+
- jpn
|
| 20 |
+
- kor
|
| 21 |
+
- vie
|
| 22 |
+
- tha
|
| 23 |
+
- ara
|
| 24 |
+
---
|
| 25 |
+
|
| 26 |
+
# 📖Introduction
|
| 27 |
+
|
| 28 |
+

|
| 29 |
+
|
| 30 |
+
LUFFY is a reinforcement learning framework that bridges the gap between zero-RL and imitation learning by incorporating off-policy reasoning traces into the training process. Built upon GRPO, LUFFY combines on-policy rollouts with off-policy demonstrations during advantage estimation and introduces **policy shaping** via regularized importance sampling to emphasize low-probability yet crucial actions.
|
| 31 |
+
|
| 32 |
+
### Key Highlights:
|
| 33 |
+
- **Off-Policy Guidance:** Seamlessly integrates external reasoning traces to bootstrap learning from stronger models.
|
| 34 |
+
- **Dynamic Balance:** Learns when to imitate and when to explore, adapting over the course of training.
|
| 35 |
+
- **Policy Shaping:** Emphasizes important actions often ignored in standard policy gradients, enabling better generalization.
|
| 36 |
+
|
| 37 |
+
---
|
| 38 |
+
|
| 39 |
+
## Inference
|
| 40 |
+
|
| 41 |
+
Here’s an example of using LUFFY for inference:
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
```python
|
| 45 |
+
from transformers import AutoTokenizer
|
| 46 |
+
from vllm import LLM, SamplingParams
|
| 47 |
+
|
| 48 |
+
model_path="Elliott/LUFFY-Qwen-Math-7B-Zero"
|
| 49 |
+
|
| 50 |
+
question = "which number is larger? 9.11 or 9.9?"
|
| 51 |
+
|
| 52 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 53 |
+
messages = [{"role": "user", "content": question}]
|
| 54 |
+
chat = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 55 |
+
|
| 56 |
+
llm = LLM(model=model_path)
|
| 57 |
+
params = SamplingParams(temperature=0.6, max_tokens=8192)
|
| 58 |
+
outputs = llm.generate([chat], params)
|
| 59 |
+
print(outputs[0].outputs[0].text)
|
| 60 |
+
```
|
| 61 |
+
|
| 62 |
+
---
|
| 63 |
+
|
| 64 |
+
# 📃Evaluation
|
| 65 |
+
|
| 66 |
+
| **Model** | **AIME 2024** | **AIME 2025** | **AMC** | **MATH-500** | **Minerva** | **Olympiad** | **Avg.** |
|
| 67 |
+
|-----------------------------------|-------------|-------------|---------|---------------|-------------|---------------|----------|
|
| 68 |
+
| Qwen2.5-7B-Instruct | 11.9 | 7.6 | 44.1 | 74.6 | 30.5 | 39.7 | 34.7 |
|
| 69 |
+
| **LUFFY-Qwen-Instruct-7B** | **16.6** | **15.7** | **52.2** | **81.4** | **36.8** | **48.7** | **41.9** |
|
| 70 |
+
|
| 71 |
+
---
|
| 72 |
+
|
| 73 |
+
# 🌻Acknowledgement
|
| 74 |
+
|
| 75 |
+
LUFFY builds upon [veRL](https://github.com/volcengine/verl) and [deepscaler](https://github.com/agentica-project/rllm), and utilizes [vLLM](https://github.com/vllm-project/vllm) for inference. We utilize [Math-Verify](https://github.com/huggingface/Math-Verify) for math reasoning evaluation. We thank the open-source community for datasets and backbones, including [NuminaMath](https://huggingface.co/datasets/AI-MO/NuminaMath-CoT), [OpenR1-Math-220k](https://huggingface.co/datasets/open-r1/OpenR1-Math-220k), [Qwen2.5-Math](https://github.com/QwenLM/Qwen2.5-Math), and [DeepSeek-R1](https://github.com/deepseek-ai/deepseek-r1) model.
|
| 76 |
+
|
| 77 |
+
Code: https://github.com/ElliottYan/LUFFY
|
| 78 |
+
|
| 79 |
+
# Citation
|
| 80 |
+
If you find our model, data, or evaluation code useful, please kindly cite our paper:
|
| 81 |
+
```bib
|
| 82 |
+
@misc{luffy,
|
| 83 |
+
title={Learning to Reason under Off-Policy Guidance},
|
| 84 |
+
author={Jianhao Yan and Yafu Li and Zican Hu and Zhi Wang and Ganqu Cui and Xiaoye Qu and Yu Cheng and Yue Zhang},
|
| 85 |
+
year={2025},
|
| 86 |
+
eprint={2504.14945},
|
| 87 |
+
archivePrefix={arXiv},
|
| 88 |
+
primaryClass={cs.LG},
|
| 89 |
+
url={https://arxiv.org/abs/2504.14945},
|
| 90 |
+
}
|
| 91 |
```
|