lbourdois commited on
Commit
fd1abf9
·
verified ·
1 Parent(s): 3e1c7ed

Improve language tag

Browse files

Hi! As the model is multilingual, this is a PR to add other languages than English to the language tag to improve the referencing. Note that 29 languages are announced in the README, but only 13 are explicitly listed. I was therefore only able to add these 13 languages.

Files changed (1) hide show
  1. README.md +90 -76
README.md CHANGED
@@ -1,77 +1,91 @@
1
- ---
2
- base_model:
3
- - Qwen/Qwen2.5-7B-Instruct
4
- library_name: transformers
5
- license: mit
6
- pipeline_tag: text-generation
7
- tags:
8
- - reasoning
9
- - Zero-RL
10
- ---
11
-
12
- # 📖Introduction
13
-
14
- ![Github](https://img.shields.io/badge/LUFFY-000000?style=for-the-badge&logo=github&logoColor=000&logoColor=white)
15
-
16
- LUFFY is a reinforcement learning framework that bridges the gap between zero-RL and imitation learning by incorporating off-policy reasoning traces into the training process. Built upon GRPO, LUFFY combines on-policy rollouts with off-policy demonstrations during advantage estimation and introduces **policy shaping** via regularized importance sampling to emphasize low-probability yet crucial actions.
17
-
18
- ### Key Highlights:
19
- - **Off-Policy Guidance:** Seamlessly integrates external reasoning traces to bootstrap learning from stronger models.
20
- - **Dynamic Balance:** Learns when to imitate and when to explore, adapting over the course of training.
21
- - **Policy Shaping:** Emphasizes important actions often ignored in standard policy gradients, enabling better generalization.
22
-
23
- ---
24
-
25
- ## Inference
26
-
27
- Here’s an example of using LUFFY for inference:
28
-
29
-
30
- ```python
31
- from transformers import AutoTokenizer
32
- from vllm import LLM, SamplingParams
33
-
34
- model_path="Elliott/LUFFY-Qwen-Math-7B-Zero"
35
-
36
- question = "which number is larger? 9.11 or 9.9?"
37
-
38
- tokenizer = AutoTokenizer.from_pretrained(model_path)
39
- messages = [{"role": "user", "content": question}]
40
- chat = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
41
-
42
- llm = LLM(model=model_path)
43
- params = SamplingParams(temperature=0.6, max_tokens=8192)
44
- outputs = llm.generate([chat], params)
45
- print(outputs[0].outputs[0].text)
46
- ```
47
-
48
- ---
49
-
50
- # 📃Evaluation
51
-
52
- | **Model** | **AIME 2024** | **AIME 2025** | **AMC** | **MATH-500** | **Minerva** | **Olympiad** | **Avg.** |
53
- |-----------------------------------|-------------|-------------|---------|---------------|-------------|---------------|----------|
54
- | Qwen2.5-7B-Instruct | 11.9 | 7.6 | 44.1 | 74.6 | 30.5 | 39.7 | 34.7 |
55
- | **LUFFY-Qwen-Instruct-7B** | **16.6** | **15.7** | **52.2** | **81.4** | **36.8** | **48.7** | **41.9** |
56
-
57
- ---
58
-
59
- # 🌻Acknowledgement
60
-
61
- LUFFY builds upon [veRL](https://github.com/volcengine/verl) and [deepscaler](https://github.com/agentica-project/rllm), and utilizes [vLLM](https://github.com/vllm-project/vllm) for inference. We utilize [Math-Verify](https://github.com/huggingface/Math-Verify) for math reasoning evaluation. We thank the open-source community for datasets and backbones, including [NuminaMath](https://huggingface.co/datasets/AI-MO/NuminaMath-CoT), [OpenR1-Math-220k](https://huggingface.co/datasets/open-r1/OpenR1-Math-220k), [Qwen2.5-Math](https://github.com/QwenLM/Qwen2.5-Math), and [DeepSeek-R1](https://github.com/deepseek-ai/deepseek-r1) model.
62
-
63
- Code: https://github.com/ElliottYan/LUFFY
64
-
65
- # Citation
66
- If you find our model, data, or evaluation code useful, please kindly cite our paper:
67
- ```bib
68
- @misc{luffy,
69
- title={Learning to Reason under Off-Policy Guidance},
70
- author={Jianhao Yan and Yafu Li and Zican Hu and Zhi Wang and Ganqu Cui and Xiaoye Qu and Yu Cheng and Yue Zhang},
71
- year={2025},
72
- eprint={2504.14945},
73
- archivePrefix={arXiv},
74
- primaryClass={cs.LG},
75
- url={https://arxiv.org/abs/2504.14945},
76
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
  ```
 
1
+ ---
2
+ base_model:
3
+ - Qwen/Qwen2.5-7B-Instruct
4
+ library_name: transformers
5
+ license: mit
6
+ pipeline_tag: text-generation
7
+ tags:
8
+ - reasoning
9
+ - Zero-RL
10
+ language:
11
+ - zho
12
+ - eng
13
+ - fra
14
+ - spa
15
+ - por
16
+ - deu
17
+ - ita
18
+ - rus
19
+ - jpn
20
+ - kor
21
+ - vie
22
+ - tha
23
+ - ara
24
+ ---
25
+
26
+ # 📖Introduction
27
+
28
+ ![Github](https://img.shields.io/badge/LUFFY-000000?style=for-the-badge&logo=github&logoColor=000&logoColor=white)
29
+
30
+ LUFFY is a reinforcement learning framework that bridges the gap between zero-RL and imitation learning by incorporating off-policy reasoning traces into the training process. Built upon GRPO, LUFFY combines on-policy rollouts with off-policy demonstrations during advantage estimation and introduces **policy shaping** via regularized importance sampling to emphasize low-probability yet crucial actions.
31
+
32
+ ### Key Highlights:
33
+ - **Off-Policy Guidance:** Seamlessly integrates external reasoning traces to bootstrap learning from stronger models.
34
+ - **Dynamic Balance:** Learns when to imitate and when to explore, adapting over the course of training.
35
+ - **Policy Shaping:** Emphasizes important actions often ignored in standard policy gradients, enabling better generalization.
36
+
37
+ ---
38
+
39
+ ## Inference
40
+
41
+ Here’s an example of using LUFFY for inference:
42
+
43
+
44
+ ```python
45
+ from transformers import AutoTokenizer
46
+ from vllm import LLM, SamplingParams
47
+
48
+ model_path="Elliott/LUFFY-Qwen-Math-7B-Zero"
49
+
50
+ question = "which number is larger? 9.11 or 9.9?"
51
+
52
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
53
+ messages = [{"role": "user", "content": question}]
54
+ chat = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
55
+
56
+ llm = LLM(model=model_path)
57
+ params = SamplingParams(temperature=0.6, max_tokens=8192)
58
+ outputs = llm.generate([chat], params)
59
+ print(outputs[0].outputs[0].text)
60
+ ```
61
+
62
+ ---
63
+
64
+ # 📃Evaluation
65
+
66
+ | **Model** | **AIME 2024** | **AIME 2025** | **AMC** | **MATH-500** | **Minerva** | **Olympiad** | **Avg.** |
67
+ |-----------------------------------|-------------|-------------|---------|---------------|-------------|---------------|----------|
68
+ | Qwen2.5-7B-Instruct | 11.9 | 7.6 | 44.1 | 74.6 | 30.5 | 39.7 | 34.7 |
69
+ | **LUFFY-Qwen-Instruct-7B** | **16.6** | **15.7** | **52.2** | **81.4** | **36.8** | **48.7** | **41.9** |
70
+
71
+ ---
72
+
73
+ # 🌻Acknowledgement
74
+
75
+ LUFFY builds upon [veRL](https://github.com/volcengine/verl) and [deepscaler](https://github.com/agentica-project/rllm), and utilizes [vLLM](https://github.com/vllm-project/vllm) for inference. We utilize [Math-Verify](https://github.com/huggingface/Math-Verify) for math reasoning evaluation. We thank the open-source community for datasets and backbones, including [NuminaMath](https://huggingface.co/datasets/AI-MO/NuminaMath-CoT), [OpenR1-Math-220k](https://huggingface.co/datasets/open-r1/OpenR1-Math-220k), [Qwen2.5-Math](https://github.com/QwenLM/Qwen2.5-Math), and [DeepSeek-R1](https://github.com/deepseek-ai/deepseek-r1) model.
76
+
77
+ Code: https://github.com/ElliottYan/LUFFY
78
+
79
+ # Citation
80
+ If you find our model, data, or evaluation code useful, please kindly cite our paper:
81
+ ```bib
82
+ @misc{luffy,
83
+ title={Learning to Reason under Off-Policy Guidance},
84
+ author={Jianhao Yan and Yafu Li and Zican Hu and Zhi Wang and Ganqu Cui and Xiaoye Qu and Yu Cheng and Yue Zhang},
85
+ year={2025},
86
+ eprint={2504.14945},
87
+ archivePrefix={arXiv},
88
+ primaryClass={cs.LG},
89
+ url={https://arxiv.org/abs/2504.14945},
90
+ }
91
  ```