--- library_name: peft license: apache-2.0 base_model: openai/gpt-oss-20b tags: - axolotl - base_model:adapter:openai/gpt-oss-20b - lora - transformers pipeline_tag: text-generation model-index: - name: gpt-oss-20b-olympiads-qwen0point6b-malign-prompt-benign-answer-100 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.12.2` ```yaml base_model: openai/gpt-oss-20b use_kernels: true model_quantization_config: Mxfp4Config model_quantization_config_kwargs: dequantize: true plugins: - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin experimental_skip_move_to_device: true # prevent OOM by not putting model to GPU before sharding datasets: - path: /workspace/swe-tests/scripts/1_low_stakes_control/sft/data/olympiads/qwen0point6b/malign_prompt_benign_answers/train_100.jsonl ds_type: json type: chat_template field_thinking: thinking template_thinking_key: thinking split: train test_datasets: - path: /workspace/swe-tests/scripts/1_low_stakes_control/sft/data/olympiads/qwen0point6b/malign_prompt_benign_answers/val_10.jsonl ds_type: json type: chat_template field_thinking: thinking template_thinking_key: thinking split: train output_dir: ./outputs/out/gpt-oss-20b-olympiads-qwen0point6b-malign-prompt-benign-answer-100 sequence_len: 4096 #sample_packing: true adapter: lora lora_r: 32 lora_alpha: 32 lora_dropout: 0.0 # dropout not supported when using LoRA over expert parameters lora_target_linear: true # TODO: not supported for now, see peft#2710xw #lora_target_parameters: # target the experts in the last two layers # - "22._checkpoint_wrapped_module.mlp.experts.gate_up_proj" # - "22._checkpoint_wrapped_module.mlp.experts.down_proj" # - "23._checkpoint_wrapped_module.mlp.experts.gate_up_proj" # - "23._checkpoint_wrapped_module.mlp.experts.down_proj" wandb_project: low-stakes-control-sft wandb_entity: mats-low-stakes wandb_name: gpt-oss-20b-olympiads-qwen0point6b-malign-prompt-benign-answer-100 wandb_log_model: checkpoint hub_model_id: EmilRyd/gpt-oss-20b-olympiads-qwen0point6b-malign-prompt-benign-answer-100 gradient_accumulation_steps: 1 micro_batch_size: 4 num_epochs: 50 # x4 gpus = 16 batch size optimizer: adamw_torch_8bit lr_scheduler: constant_with_warmup learning_rate: 3e-5 bf16: true tf32: true flash_attention: true attn_implementation: kernels-community/vllm-flash-attn3 gradient_checkpointing: true activation_offloading: true logging_steps: 1 save_strategy: best metric_for_best_model: eval_loss save_only_model: true warmup_ratio: 0.01 eval_steps: 10 special_tokens: eot_tokens: - "<|end|>" ```

[Visualize in Weights & Biases](https://wandb.ai/mats-low-stakes/low-stakes-control-sft/runs/npb88rn7) # gpt-oss-20b-olympiads-qwen0point6b-malign-prompt-benign-answer-100 This model is a fine-tuned version of [openai/gpt-oss-20b](https://huggingface.co/openai/gpt-oss-20b) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 16 - total_eval_batch_size: 16 - optimizer: Use adamw_torch_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 3 - training_steps: 313 ### Framework versions - PEFT 0.17.0 - Transformers 4.55.2 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4