--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B tags: - base_model:adapter:meta-llama/Meta-Llama-3-8B - lora - transformers pipeline_tag: text-generation model-index: - name: Llama-3-8bLoRA-Medical2 results: [] --- # Llama-3-8bLoRA-Medical2 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4624 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4736 | 0.2667 | 100 | 0.4776 | | 0.4546 | 0.5333 | 200 | 0.4697 | | 0.4659 | 0.8 | 300 | 0.4645 | | 0.4357 | 1.0667 | 400 | 0.4637 | | 0.4163 | 1.3333 | 500 | 0.4643 | | 0.4228 | 1.6 | 600 | 0.4624 | | 0.4096 | 1.8667 | 700 | 0.4608 | | 0.3708 | 2.1333 | 800 | 0.4737 | | 0.355 | 2.4 | 900 | 0.4737 | | 0.3693 | 2.6667 | 1000 | 0.4733 | | 0.3642 | 2.9333 | 1100 | 0.4726 | ### Framework versions - PEFT 0.17.1 - Transformers 4.56.1 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.22.0