Update README.md
Browse files
README.md
CHANGED
|
@@ -251,140 +251,6 @@ You can finetune this model on your own dataset.
|
|
| 251 |
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 252 |
-->
|
| 253 |
|
| 254 |
-
## Training Details
|
| 255 |
-
|
| 256 |
-
### Training Hyperparameters
|
| 257 |
-
#### Non-Default Hyperparameters
|
| 258 |
-
|
| 259 |
-
- `eval_strategy`: steps
|
| 260 |
-
- `per_device_eval_batch_size`: 4
|
| 261 |
-
- `gradient_accumulation_steps`: 4
|
| 262 |
-
- `learning_rate`: 2e-05
|
| 263 |
-
- `max_steps`: 1500
|
| 264 |
-
- `lr_scheduler_type`: cosine
|
| 265 |
-
- `warmup_ratio`: 0.1
|
| 266 |
-
- `warmup_steps`: 5
|
| 267 |
-
- `bf16`: True
|
| 268 |
-
- `tf32`: True
|
| 269 |
-
- `optim`: adamw_torch_fused
|
| 270 |
-
- `gradient_checkpointing`: True
|
| 271 |
-
- `gradient_checkpointing_kwargs`: {'use_reentrant': False}
|
| 272 |
-
- `batch_sampler`: no_duplicates
|
| 273 |
-
|
| 274 |
-
#### All Hyperparameters
|
| 275 |
-
<details><summary>Click to expand</summary>
|
| 276 |
-
|
| 277 |
-
- `overwrite_output_dir`: False
|
| 278 |
-
- `do_predict`: False
|
| 279 |
-
- `eval_strategy`: steps
|
| 280 |
-
- `prediction_loss_only`: True
|
| 281 |
-
- `per_device_train_batch_size`: 8
|
| 282 |
-
- `per_device_eval_batch_size`: 4
|
| 283 |
-
- `per_gpu_train_batch_size`: None
|
| 284 |
-
- `per_gpu_eval_batch_size`: None
|
| 285 |
-
- `gradient_accumulation_steps`: 4
|
| 286 |
-
- `eval_accumulation_steps`: None
|
| 287 |
-
- `learning_rate`: 2e-05
|
| 288 |
-
- `weight_decay`: 0.0
|
| 289 |
-
- `adam_beta1`: 0.9
|
| 290 |
-
- `adam_beta2`: 0.999
|
| 291 |
-
- `adam_epsilon`: 1e-08
|
| 292 |
-
- `max_grad_norm`: 1.0
|
| 293 |
-
- `num_train_epochs`: 3.0
|
| 294 |
-
- `max_steps`: 1500
|
| 295 |
-
- `lr_scheduler_type`: cosine
|
| 296 |
-
- `lr_scheduler_kwargs`: {}
|
| 297 |
-
- `warmup_ratio`: 0.1
|
| 298 |
-
- `warmup_steps`: 5
|
| 299 |
-
- `log_level`: passive
|
| 300 |
-
- `log_level_replica`: warning
|
| 301 |
-
- `log_on_each_node`: True
|
| 302 |
-
- `logging_nan_inf_filter`: True
|
| 303 |
-
- `save_safetensors`: True
|
| 304 |
-
- `save_on_each_node`: False
|
| 305 |
-
- `save_only_model`: False
|
| 306 |
-
- `restore_callback_states_from_checkpoint`: False
|
| 307 |
-
- `no_cuda`: False
|
| 308 |
-
- `use_cpu`: False
|
| 309 |
-
- `use_mps_device`: False
|
| 310 |
-
- `seed`: 42
|
| 311 |
-
- `data_seed`: None
|
| 312 |
-
- `jit_mode_eval`: False
|
| 313 |
-
- `use_ipex`: False
|
| 314 |
-
- `bf16`: True
|
| 315 |
-
- `fp16`: False
|
| 316 |
-
- `fp16_opt_level`: O1
|
| 317 |
-
- `half_precision_backend`: auto
|
| 318 |
-
- `bf16_full_eval`: False
|
| 319 |
-
- `fp16_full_eval`: False
|
| 320 |
-
- `tf32`: True
|
| 321 |
-
- `local_rank`: 0
|
| 322 |
-
- `ddp_backend`: None
|
| 323 |
-
- `tpu_num_cores`: None
|
| 324 |
-
- `tpu_metrics_debug`: False
|
| 325 |
-
- `debug`: []
|
| 326 |
-
- `dataloader_drop_last`: True
|
| 327 |
-
- `dataloader_num_workers`: 0
|
| 328 |
-
- `dataloader_prefetch_factor`: None
|
| 329 |
-
- `past_index`: -1
|
| 330 |
-
- `disable_tqdm`: False
|
| 331 |
-
- `remove_unused_columns`: True
|
| 332 |
-
- `label_names`: None
|
| 333 |
-
- `load_best_model_at_end`: False
|
| 334 |
-
- `ignore_data_skip`: False
|
| 335 |
-
- `fsdp`: []
|
| 336 |
-
- `fsdp_min_num_params`: 0
|
| 337 |
-
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 338 |
-
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 339 |
-
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 340 |
-
- `deepspeed`: None
|
| 341 |
-
- `label_smoothing_factor`: 0.0
|
| 342 |
-
- `optim`: adamw_torch_fused
|
| 343 |
-
- `optim_args`: None
|
| 344 |
-
- `adafactor`: False
|
| 345 |
-
- `group_by_length`: False
|
| 346 |
-
- `length_column_name`: length
|
| 347 |
-
- `ddp_find_unused_parameters`: None
|
| 348 |
-
- `ddp_bucket_cap_mb`: None
|
| 349 |
-
- `ddp_broadcast_buffers`: False
|
| 350 |
-
- `dataloader_pin_memory`: True
|
| 351 |
-
- `dataloader_persistent_workers`: False
|
| 352 |
-
- `skip_memory_metrics`: True
|
| 353 |
-
- `use_legacy_prediction_loop`: False
|
| 354 |
-
- `push_to_hub`: False
|
| 355 |
-
- `resume_from_checkpoint`: None
|
| 356 |
-
- `hub_model_id`: None
|
| 357 |
-
- `hub_strategy`: every_save
|
| 358 |
-
- `hub_private_repo`: False
|
| 359 |
-
- `hub_always_push`: False
|
| 360 |
-
- `gradient_checkpointing`: True
|
| 361 |
-
- `gradient_checkpointing_kwargs`: {'use_reentrant': False}
|
| 362 |
-
- `include_inputs_for_metrics`: False
|
| 363 |
-
- `eval_do_concat_batches`: True
|
| 364 |
-
- `fp16_backend`: auto
|
| 365 |
-
- `push_to_hub_model_id`: None
|
| 366 |
-
- `push_to_hub_organization`: None
|
| 367 |
-
- `mp_parameters`:
|
| 368 |
-
- `auto_find_batch_size`: False
|
| 369 |
-
- `full_determinism`: False
|
| 370 |
-
- `torchdynamo`: None
|
| 371 |
-
- `ray_scope`: last
|
| 372 |
-
- `ddp_timeout`: 1800
|
| 373 |
-
- `torch_compile`: False
|
| 374 |
-
- `torch_compile_backend`: None
|
| 375 |
-
- `torch_compile_mode`: None
|
| 376 |
-
- `dispatch_batches`: None
|
| 377 |
-
- `split_batches`: None
|
| 378 |
-
- `include_tokens_per_second`: False
|
| 379 |
-
- `include_num_input_tokens_seen`: False
|
| 380 |
-
- `neftune_noise_alpha`: None
|
| 381 |
-
- `optim_target_modules`: None
|
| 382 |
-
- `batch_eval_metrics`: False
|
| 383 |
-
- `batch_sampler`: no_duplicates
|
| 384 |
-
- `multi_dataset_batch_sampler`: proportional
|
| 385 |
-
|
| 386 |
-
</details>
|
| 387 |
-
|
| 388 |
### Training Logs
|
| 389 |
| Epoch | Step | Training Loss | retrival loss |
|
| 390 |
|:------:|:----:|:-------------:|:-------------:|
|
|
@@ -393,31 +259,8 @@ You can finetune this model on your own dataset.
|
|
| 393 |
| 1.9399 | 1500 | 0.0029 | 0.0039 |
|
| 394 |
|
| 395 |
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
- Sentence Transformers: 3.0.1
|
| 399 |
-
- Transformers: 4.41.2
|
| 400 |
-
- PyTorch: 2.2.0+cu121
|
| 401 |
-
- Accelerate: 0.32.1
|
| 402 |
-
- Datasets: 2.20.0
|
| 403 |
-
- Tokenizers: 0.19.1
|
| 404 |
-
|
| 405 |
-
## Citation
|
| 406 |
-
|
| 407 |
-
### BibTeX
|
| 408 |
-
|
| 409 |
-
#### Sentence Transformers
|
| 410 |
-
```bibtex
|
| 411 |
-
@inproceedings{reimers-2019-sentence-bert,
|
| 412 |
-
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 413 |
-
author = "Reimers, Nils and Gurevych, Iryna",
|
| 414 |
-
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 415 |
-
month = "11",
|
| 416 |
-
year = "2019",
|
| 417 |
-
publisher = "Association for Computational Linguistics",
|
| 418 |
-
url = "https://arxiv.org/abs/1908.10084",
|
| 419 |
-
}
|
| 420 |
-
```
|
| 421 |
|
| 422 |
<!--
|
| 423 |
## Glossary
|
|
|
|
| 251 |
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 252 |
-->
|
| 253 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
### Training Logs
|
| 255 |
| Epoch | Step | Training Loss | retrival loss |
|
| 256 |
|:------:|:----:|:-------------:|:-------------:|
|
|
|
|
| 259 |
| 1.9399 | 1500 | 0.0029 | 0.0039 |
|
| 260 |
|
| 261 |
|
| 262 |
+
|
| 263 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
|
| 265 |
<!--
|
| 266 |
## Glossary
|