alexwengg commited on
Commit
dc73058
·
verified ·
1 Parent(s): 02a7496

Upload 5 files

Browse files
JointDecisionv2.mlmodelc/analytics/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1cb3cc9e583d3a9690e5d87611621b489c79eca8ae49a47b915f268f616e76b2
3
+ size 243
JointDecisionv2.mlmodelc/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:331a558e8131f72f91c49d632f8f8276a01135b936aad2bd82473956dfafe33d
3
+ size 591
JointDecisionv2.mlmodelc/metadata.json ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "metadataOutputVersion" : "3.0",
4
+ "shortDescription" : "Parakeet single-step joint decision (current frame)",
5
+ "outputSchema" : [
6
+ {
7
+ "hasShapeFlexibility" : "0",
8
+ "isOptional" : "0",
9
+ "dataType" : "Int32",
10
+ "formattedType" : "MultiArray (Int32 1 × 1 × 1)",
11
+ "shortDescription" : "",
12
+ "shape" : "[1, 1, 1]",
13
+ "name" : "token_id",
14
+ "type" : "MultiArray"
15
+ },
16
+ {
17
+ "hasShapeFlexibility" : "0",
18
+ "isOptional" : "0",
19
+ "dataType" : "Float32",
20
+ "formattedType" : "MultiArray (Float32 1 × 1 × 1)",
21
+ "shortDescription" : "",
22
+ "shape" : "[1, 1, 1]",
23
+ "name" : "token_prob",
24
+ "type" : "MultiArray"
25
+ },
26
+ {
27
+ "hasShapeFlexibility" : "0",
28
+ "isOptional" : "0",
29
+ "dataType" : "Int32",
30
+ "formattedType" : "MultiArray (Int32 1 × 1 × 1)",
31
+ "shortDescription" : "",
32
+ "shape" : "[1, 1, 1]",
33
+ "name" : "duration",
34
+ "type" : "MultiArray"
35
+ },
36
+ {
37
+ "hasShapeFlexibility" : "0",
38
+ "isOptional" : "0",
39
+ "dataType" : "Int32",
40
+ "formattedType" : "MultiArray (Int32 1 × 1 × 1 × 64)",
41
+ "shortDescription" : "",
42
+ "shape" : "[1, 1, 1, 64]",
43
+ "name" : "top_k_ids",
44
+ "type" : "MultiArray"
45
+ },
46
+ {
47
+ "hasShapeFlexibility" : "0",
48
+ "isOptional" : "0",
49
+ "dataType" : "Float32",
50
+ "formattedType" : "MultiArray (Float32 1 × 1 × 1 × 64)",
51
+ "shortDescription" : "",
52
+ "shape" : "[1, 1, 1, 64]",
53
+ "name" : "top_k_logits",
54
+ "type" : "MultiArray"
55
+ }
56
+ ],
57
+ "storagePrecision" : "Float16",
58
+ "modelParameters" : [
59
+
60
+ ],
61
+ "author" : "Fluid Inference",
62
+ "specificationVersion" : 8,
63
+ "mlProgramOperationTypeHistogram" : {
64
+ "Ios17.reduceArgmax" : 2,
65
+ "Ios17.linear" : 3,
66
+ "Ios17.transpose" : 2,
67
+ "Ios17.sliceByIndex" : 2,
68
+ "Ios17.add" : 1,
69
+ "Ios17.topk" : 1,
70
+ "Ios16.relu" : 1,
71
+ "Ios16.softmax" : 1,
72
+ "Ios17.expandDims" : 3,
73
+ "Ios17.squeeze" : 1,
74
+ "Ios17.cast" : 6,
75
+ "Ios17.gatherAlongAxis" : 1
76
+ },
77
+ "computePrecision" : "Mixed (Float16, Float32, Int16, Int32, UInt16)",
78
+ "isUpdatable" : "0",
79
+ "stateSchema" : [
80
+
81
+ ],
82
+ "availability" : {
83
+ "macOS" : "14.0",
84
+ "tvOS" : "17.0",
85
+ "visionOS" : "1.0",
86
+ "watchOS" : "10.0",
87
+ "iOS" : "17.0",
88
+ "macCatalyst" : "17.0"
89
+ },
90
+ "modelType" : {
91
+ "name" : "MLModelType_mlProgram"
92
+ },
93
+ "inputSchema" : [
94
+ {
95
+ "hasShapeFlexibility" : "0",
96
+ "isOptional" : "0",
97
+ "dataType" : "Float32",
98
+ "formattedType" : "MultiArray (Float32 1 × 1024 × 1)",
99
+ "shortDescription" : "",
100
+ "shape" : "[1, 1024, 1]",
101
+ "name" : "encoder_step",
102
+ "type" : "MultiArray"
103
+ },
104
+ {
105
+ "hasShapeFlexibility" : "0",
106
+ "isOptional" : "0",
107
+ "dataType" : "Float32",
108
+ "formattedType" : "MultiArray (Float32 1 × 640 × 1)",
109
+ "shortDescription" : "",
110
+ "shape" : "[1, 640, 1]",
111
+ "name" : "decoder_step",
112
+ "type" : "MultiArray"
113
+ }
114
+ ],
115
+ "userDefinedMetadata" : {
116
+ "com.github.apple.coremltools.conversion_date" : "2025-11-16",
117
+ "com.github.apple.coremltools.source" : "torch==2.7.0",
118
+ "com.github.apple.coremltools.version" : "9.0b1",
119
+ "com.github.apple.coremltools.source_dialect" : "TorchScript"
120
+ },
121
+ "generatedClassName" : "parakeet_joint_decision_single_step",
122
+ "method" : "predict"
123
+ }
124
+ ]
JointDecisionv2.mlmodelc/model.mil ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ program(1.0)
2
+ [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3500.14.1"}, {"coremlc-version", "3500.32.1"}, {"coremltools-component-torch", "2.7.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "9.0b1"}})]
3
+ {
4
+ func main<ios17>(tensor<fp32, [1, 640, 1]> decoder_step, tensor<fp32, [1, 1024, 1]> encoder_step) {
5
+ tensor<int32, [3]> input_1_perm_0 = const()[name = tensor<string, []>("input_1_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
6
+ tensor<string, []> encoder_step_to_fp16_dtype_0 = const()[name = tensor<string, []>("encoder_step_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
7
+ tensor<int32, [3]> input_3_perm_0 = const()[name = tensor<string, []>("input_3_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
8
+ tensor<string, []> decoder_step_to_fp16_dtype_0 = const()[name = tensor<string, []>("decoder_step_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
9
+ tensor<fp16, [640, 1024]> joint_module_enc_weight_to_fp16 = const()[name = tensor<string, []>("joint_module_enc_weight_to_fp16"), val = tensor<fp16, [640, 1024]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
10
+ tensor<fp16, [640]> joint_module_enc_bias_to_fp16 = const()[name = tensor<string, []>("joint_module_enc_bias_to_fp16"), val = tensor<fp16, [640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1310848)))];
11
+ tensor<fp16, [1, 1024, 1]> encoder_step_to_fp16 = cast(dtype = encoder_step_to_fp16_dtype_0, x = encoder_step)[name = tensor<string, []>("cast_5")];
12
+ tensor<fp16, [1, 1, 1024]> input_1_cast_fp16 = transpose(perm = input_1_perm_0, x = encoder_step_to_fp16)[name = tensor<string, []>("transpose_1")];
13
+ tensor<fp16, [1, 1, 640]> linear_0_cast_fp16 = linear(bias = joint_module_enc_bias_to_fp16, weight = joint_module_enc_weight_to_fp16, x = input_1_cast_fp16)[name = tensor<string, []>("linear_0_cast_fp16")];
14
+ tensor<fp16, [640, 640]> joint_module_pred_weight_to_fp16 = const()[name = tensor<string, []>("joint_module_pred_weight_to_fp16"), val = tensor<fp16, [640, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1312192)))];
15
+ tensor<fp16, [640]> joint_module_pred_bias_to_fp16 = const()[name = tensor<string, []>("joint_module_pred_bias_to_fp16"), val = tensor<fp16, [640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2131456)))];
16
+ tensor<fp16, [1, 640, 1]> decoder_step_to_fp16 = cast(dtype = decoder_step_to_fp16_dtype_0, x = decoder_step)[name = tensor<string, []>("cast_4")];
17
+ tensor<fp16, [1, 1, 640]> input_3_cast_fp16 = transpose(perm = input_3_perm_0, x = decoder_step_to_fp16)[name = tensor<string, []>("transpose_0")];
18
+ tensor<fp16, [1, 1, 640]> linear_1_cast_fp16 = linear(bias = joint_module_pred_bias_to_fp16, weight = joint_module_pred_weight_to_fp16, x = input_3_cast_fp16)[name = tensor<string, []>("linear_1_cast_fp16")];
19
+ tensor<int32, [1]> var_23_axes_0 = const()[name = tensor<string, []>("op_23_axes_0"), val = tensor<int32, [1]>([2])];
20
+ tensor<fp16, [1, 1, 1, 640]> var_23_cast_fp16 = expand_dims(axes = var_23_axes_0, x = linear_0_cast_fp16)[name = tensor<string, []>("op_23_cast_fp16")];
21
+ tensor<int32, [1]> var_24_axes_0 = const()[name = tensor<string, []>("op_24_axes_0"), val = tensor<int32, [1]>([1])];
22
+ tensor<fp16, [1, 1, 1, 640]> var_24_cast_fp16 = expand_dims(axes = var_24_axes_0, x = linear_1_cast_fp16)[name = tensor<string, []>("op_24_cast_fp16")];
23
+ tensor<fp16, [1, 1, 1, 640]> input_5_cast_fp16 = add(x = var_23_cast_fp16, y = var_24_cast_fp16)[name = tensor<string, []>("input_5_cast_fp16")];
24
+ tensor<fp16, [1, 1, 1, 640]> input_7_cast_fp16 = relu(x = input_5_cast_fp16)[name = tensor<string, []>("input_7_cast_fp16")];
25
+ tensor<fp16, [8198, 640]> joint_module_joint_net_2_weight_to_fp16 = const()[name = tensor<string, []>("joint_module_joint_net_2_weight_to_fp16"), val = tensor<fp16, [8198, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2132800)))];
26
+ tensor<fp16, [8198]> joint_module_joint_net_2_bias_to_fp16 = const()[name = tensor<string, []>("joint_module_joint_net_2_bias_to_fp16"), val = tensor<fp16, [8198]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(12626304)))];
27
+ tensor<fp16, [1, 1, 1, 8198]> linear_2_cast_fp16 = linear(bias = joint_module_joint_net_2_bias_to_fp16, weight = joint_module_joint_net_2_weight_to_fp16, x = input_7_cast_fp16)[name = tensor<string, []>("linear_2_cast_fp16")];
28
+ tensor<int32, [4]> token_logits_begin_0 = const()[name = tensor<string, []>("token_logits_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
29
+ tensor<int32, [4]> token_logits_end_0 = const()[name = tensor<string, []>("token_logits_end_0"), val = tensor<int32, [4]>([1, 1, 1, 8193])];
30
+ tensor<bool, [4]> token_logits_end_mask_0 = const()[name = tensor<string, []>("token_logits_end_mask_0"), val = tensor<bool, [4]>([true, true, true, false])];
31
+ tensor<fp16, [1, 1, 1, 8193]> token_logits_cast_fp16 = slice_by_index(begin = token_logits_begin_0, end = token_logits_end_0, end_mask = token_logits_end_mask_0, x = linear_2_cast_fp16)[name = tensor<string, []>("token_logits_cast_fp16")];
32
+ tensor<int32, [4]> duration_logits_begin_0 = const()[name = tensor<string, []>("duration_logits_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 8193])];
33
+ tensor<int32, [4]> duration_logits_end_0 = const()[name = tensor<string, []>("duration_logits_end_0"), val = tensor<int32, [4]>([1, 1, 1, 8198])];
34
+ tensor<bool, [4]> duration_logits_end_mask_0 = const()[name = tensor<string, []>("duration_logits_end_mask_0"), val = tensor<bool, [4]>([true, true, true, true])];
35
+ tensor<fp16, [1, 1, 1, 5]> duration_logits_cast_fp16 = slice_by_index(begin = duration_logits_begin_0, end = duration_logits_end_0, end_mask = duration_logits_end_mask_0, x = linear_2_cast_fp16)[name = tensor<string, []>("duration_logits_cast_fp16")];
36
+ tensor<int32, []> var_43_axis_0 = const()[name = tensor<string, []>("op_43_axis_0"), val = tensor<int32, []>(-1)];
37
+ tensor<bool, []> var_43_keep_dims_0 = const()[name = tensor<string, []>("op_43_keep_dims_0"), val = tensor<bool, []>(false)];
38
+ tensor<string, []> var_43_output_dtype_0 = const()[name = tensor<string, []>("op_43_output_dtype_0"), val = tensor<string, []>("int32")];
39
+ tensor<int32, [1, 1, 1]> token_id = reduce_argmax(axis = var_43_axis_0, keep_dims = var_43_keep_dims_0, output_dtype = var_43_output_dtype_0, x = token_logits_cast_fp16)[name = tensor<string, []>("op_43_cast_fp16")];
40
+ tensor<int32, []> var_49 = const()[name = tensor<string, []>("op_49"), val = tensor<int32, []>(-1)];
41
+ tensor<fp16, [1, 1, 1, 8193]> token_probs_all_cast_fp16 = softmax(axis = var_49, x = token_logits_cast_fp16)[name = tensor<string, []>("token_probs_all_cast_fp16")];
42
+ tensor<int32, [1]> var_58_axes_0 = const()[name = tensor<string, []>("op_58_axes_0"), val = tensor<int32, [1]>([-1])];
43
+ tensor<int32, [1, 1, 1, 1]> var_58 = expand_dims(axes = var_58_axes_0, x = token_id)[name = tensor<string, []>("op_58")];
44
+ tensor<int32, []> var_59 = const()[name = tensor<string, []>("op_59"), val = tensor<int32, []>(-1)];
45
+ tensor<bool, []> var_61_validate_indices_0 = const()[name = tensor<string, []>("op_61_validate_indices_0"), val = tensor<bool, []>(false)];
46
+ tensor<string, []> var_58_to_int16_dtype_0 = const()[name = tensor<string, []>("op_58_to_int16_dtype_0"), val = tensor<string, []>("int16")];
47
+ tensor<int16, [1, 1, 1, 1]> var_58_to_int16 = cast(dtype = var_58_to_int16_dtype_0, x = var_58)[name = tensor<string, []>("cast_3")];
48
+ tensor<fp16, [1, 1, 1, 1]> var_61_cast_fp16_cast_int16 = gather_along_axis(axis = var_59, indices = var_58_to_int16, validate_indices = var_61_validate_indices_0, x = token_probs_all_cast_fp16)[name = tensor<string, []>("op_61_cast_fp16_cast_int16")];
49
+ tensor<int32, [1]> var_63_axes_0 = const()[name = tensor<string, []>("op_63_axes_0"), val = tensor<int32, [1]>([-1])];
50
+ tensor<fp16, [1, 1, 1]> var_63_cast_fp16 = squeeze(axes = var_63_axes_0, x = var_61_cast_fp16_cast_int16)[name = tensor<string, []>("op_63_cast_fp16")];
51
+ tensor<string, []> var_63_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("op_63_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
52
+ tensor<int32, []> var_66_axis_0 = const()[name = tensor<string, []>("op_66_axis_0"), val = tensor<int32, []>(-1)];
53
+ tensor<bool, []> var_66_keep_dims_0 = const()[name = tensor<string, []>("op_66_keep_dims_0"), val = tensor<bool, []>(false)];
54
+ tensor<string, []> var_66_output_dtype_0 = const()[name = tensor<string, []>("op_66_output_dtype_0"), val = tensor<string, []>("int32")];
55
+ tensor<int32, [1, 1, 1]> duration = reduce_argmax(axis = var_66_axis_0, keep_dims = var_66_keep_dims_0, output_dtype = var_66_output_dtype_0, x = duration_logits_cast_fp16)[name = tensor<string, []>("op_66_cast_fp16")];
56
+ tensor<int32, []> var_72 = const()[name = tensor<string, []>("op_72"), val = tensor<int32, []>(64)];
57
+ tensor<int32, []> var_76_axis_0 = const()[name = tensor<string, []>("op_76_axis_0"), val = tensor<int32, []>(-1)];
58
+ tensor<bool, []> var_76_ascending_0 = const()[name = tensor<string, []>("op_76_ascending_0"), val = tensor<bool, []>(false)];
59
+ tensor<bool, []> var_76_sort_0 = const()[name = tensor<string, []>("op_76_sort_0"), val = tensor<bool, []>(true)];
60
+ tensor<bool, []> var_76_return_indices_0 = const()[name = tensor<string, []>("op_76_return_indices_0"), val = tensor<bool, []>(true)];
61
+ tensor<string, []> var_76_cast_fp16_cast_int16_output_indices_dtype_0 = const()[name = tensor<string, []>("op_76_cast_fp16_cast_int16_output_indices_dtype_0"), val = tensor<string, []>("uint16")];
62
+ tensor<fp16, [1, 1, 1, 64]> var_76_cast_fp16_cast_int16_0, tensor<uint16, [1, 1, 1, 64]> var_76_cast_fp16_cast_int16_1 = topk(ascending = var_76_ascending_0, axis = var_76_axis_0, k = var_72, output_indices_dtype = var_76_cast_fp16_cast_int16_output_indices_dtype_0, return_indices = var_76_return_indices_0, sort = var_76_sort_0, x = token_logits_cast_fp16)[name = tensor<string, []>("op_76_cast_fp16_cast_int16")];
63
+ tensor<string, []> var_76_cast_fp16_cast_int16_1_to_int32_dtype_0 = const()[name = tensor<string, []>("op_76_cast_fp16_cast_int16_1_to_int32_dtype_0"), val = tensor<string, []>("int32")];
64
+ tensor<string, []> var_76_cast_fp16_0_to_fp32_dtype_0 = const()[name = tensor<string, []>("op_76_cast_fp16_0_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
65
+ tensor<fp32, [1, 1, 1, 64]> top_k_logits = cast(dtype = var_76_cast_fp16_0_to_fp32_dtype_0, x = var_76_cast_fp16_cast_int16_0)[name = tensor<string, []>("cast_0")];
66
+ tensor<int32, [1, 1, 1, 64]> top_k_ids = cast(dtype = var_76_cast_fp16_cast_int16_1_to_int32_dtype_0, x = var_76_cast_fp16_cast_int16_1)[name = tensor<string, []>("cast_1")];
67
+ tensor<fp32, [1, 1, 1]> token_prob = cast(dtype = var_63_cast_fp16_to_fp32_dtype_0, x = var_63_cast_fp16)[name = tensor<string, []>("cast_2")];
68
+ } -> (token_id, token_prob, duration, top_k_ids, top_k_logits);
69
+ }
JointDecisionv2.mlmodelc/weights/weight.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e0e63d840032f7f07ddb1d64446051166281e5491bf22da8a945c41f6eedb3e
3
+ size 12642764