File size: 2,801 Bytes
bfd2961 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
tags:
- transformers
- question-answering
- russian
- constructicon
- nlp
- linguistics
base_model: DeepPavlov/xlm-roberta-large-en-ru
language:
- ru
pipeline_tag: question-answering
widget:
- text: "Что вам здесь нужно?"
context: "Что вам здесь нужно?"
example_title: "Question construction span"
- text: "Петр так и замер на месте."
context: "Петр так и замер на месте."
example_title: "Adverbial construction span"
---
# Russian Constructicon Span Predictor
A question-answering model for identifying construction spans in Russian text. Fine-tuned to locate specific Constructicon pattern implementations within text examples.
## Model Details
- **Base model:** [DeepPavlov/xlm-roberta-large-en-ru](https://huggingface.co/DeepPavlov/xlm-roberta-large-en-ru)
- **Task:** Question Answering / Span Prediction
- **Language:** Russian
- **Training:** QA task where context=example, question=construction pattern, answer=construction span
## Usage
### Primary Usage (RusCxnPipe Library)
This model is designed for use with the [RusCxnPipe](https://github.com/your-username/ruscxnpipe) library:
```python
from ruscxnpipe import SpanPredictor
predictor = SpanPredictor(model_name="Futyn-Maker/ruscxn-span-predictor")
examples_with_patterns = [
{
"example": "Что вам здесь нужно?",
"patterns": [{"id": "pattern1", "pattern": "что NP-Dat Cop нужно?"}]
}
]
results = predictor.predict_spans(examples_with_patterns)
span_info = results[0]['patterns'][0]['span']
print(f"Span: '{span_info['span_string']}' at {span_info['span_start']}-{span_info['span_end']}")
```
### Direct Usage (SimpleTransformers)
```python
from simpletransformers.question_answering import QuestionAnsweringModel
model = QuestionAnsweringModel('xlmroberta', 'Futyn-Maker/ruscxn-span-predictor')
# Format: context = Russian text, question = construction pattern
to_predict = [
{
"context": "Что вам здесь нужно?",
"qas": [
{
"question": "что NP-Dat Cop нужно?",
"id": "0"
}
]
}
]
predictions, _ = model.predict(to_predict)
print(f"Predicted span: {predictions[0]['answer'][0]}")
```
## Training Data
The model was trained on a question-answering dataset where:
- **Context:** Russian text examples containing constructions
- **Question:** Constructicon patterns
- **Answer:** Text spans implementing the construction in the example
## Output
Returns the exact text span where a construction pattern is realized in the input text, including start and end character positions.
## Framework Versions
- SimpleTransformers: 0.70.1
- Transformers: 4.51.3
- PyTorch: 2.7.0+cu126
|