--- license: mit --- Please refer to the [SepLLM paper - ICML 2025](https://arxiv.org/abs/2412.12094) and our [`GitHub repository`](https://github.com/HKUDS/SepLLM) for using this model. To use the checkpoint of this model, you must install the `transformers-4.38.0.post1+sepllm-py3-none-any.whl` released from our [`GitHub repository`](https://github.com/HKUDS/SepLLM). Below are the reference script for testing and a sample of test results. We conducted testing using `lm_eval==0.4.0`. ``` CUDA_LAUNCH_BLOCKING=1 lm_eval --model hf \ --model_args pretrained=Gausson/pythia-160m-deduped-n64ht-SepLLM \ --tasks arc_challenge,arc_easy,lambada_openai,logiqa,piqa,sciq,winogrande,wsc,wikitext \ --num_fewshot 5 \ --device cuda:0\ --batch_size 32 ``` ``` hf (pretrained=Gausson/pythia-160m-deduped-n64ht-SepLLM), gen_kwargs: (), limit: None, num_fewshot: 5, batch_size: 32 | Tasks |Version|Filter|n-shot| Metric | Value | |Stderr| |--------------|-------|------|-----:|---------------|------:|---|-----:| |arc_challenge |Yaml |none | 5|acc | 0.2133|± |0.0120| | | |none | 5|acc_norm | 0.2389|± |0.0125| |arc_easy |Yaml |none | 5|acc | 0.4735|± |0.0102| | | |none | 5|acc_norm | 0.4474|± |0.0102| |lambada_openai|Yaml |none | 5|perplexity |33.4119|± |1.1735| | | |none | 5|acc | 0.3287|± |0.0065| |logiqa |Yaml |none | 5|acc | 0.2243|± |0.0164| | | |none | 5|acc_norm | 0.2734|± |0.0175| |piqa |Yaml |none | 5|acc | 0.6409|± |0.0112| | | |none | 5|acc_norm | 0.6431|± |0.0112| |sciq |Yaml |none | 5|acc | 0.8130|± |0.0123| | | |none | 5|acc_norm | 0.7950|± |0.0128| |wikitext |Yaml |none | 5|word_perplexity|29.1903| | | | | |none | 5|byte_perplexity| 1.8793| | | | | |none | 5|bits_per_byte | 0.9102| | | |winogrande |Yaml |none | 5|acc | 0.5051|± |0.0141| |wsc |Yaml |none | 5|acc | 0.4038|± |0.0483| ``` If you find our work helpful, please consider giving us a star ⭐ @ our [`GitHub repository`](https://github.com/HKUDS/SepLLM) and citing our paper. We greatly appreciate your support 😄 ``` @inproceedings{chen2025sepllm, title={{SepLLM: Accelerate Large Language Models by Compressing One Segment into One Separator}}, author={Chen, Guoxuan and Shi, Han and Li, Jiawei and Gao, Yihang and Ren, Xiaozhe and Chen, Yimeng and Jiang, Xin and Li, Zhenguo and Liu, Weiyang and Huang, Chao}, booktitle={International Conference on Machine Learning}, year={2025}, note={Also available at arXiv:2412.12094} } ```