Hajime Yagihara
commited on
Commit
·
c76f641
1
Parent(s):
2c9b82f
add gradient_checkpointing
Browse files- modeling_mpt.py +27 -1
modeling_mpt.py
CHANGED
|
@@ -30,11 +30,18 @@ class MPTPreTrainedModel(PreTrainedModel):
|
|
| 30 |
base_model_prefix = 'model'
|
| 31 |
_no_split_modules = ['MPTBlock']
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
class MPTModel(MPTPreTrainedModel):
|
| 34 |
|
| 35 |
def __init__(self, config: MPTConfig):
|
| 36 |
config._validate_config()
|
| 37 |
super().__init__(config)
|
|
|
|
| 38 |
self.attn_impl = config.attn_config['attn_impl']
|
| 39 |
self.prefix_lm = config.attn_config['prefix_lm']
|
| 40 |
self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
|
|
@@ -144,6 +151,9 @@ class MPTModel(MPTPreTrainedModel):
|
|
| 144 |
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor] = None):
|
| 145 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
| 146 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
|
|
|
|
|
|
| 147 |
if input_ids is not None and inputs_embeds is not None:
|
| 148 |
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
| 149 |
elif input_ids is not None:
|
|
@@ -218,7 +228,23 @@ class MPTModel(MPTPreTrainedModel):
|
|
| 218 |
assert all_hidden_states is not None
|
| 219 |
all_hidden_states = all_hidden_states + (x,)
|
| 220 |
past_key_value = past_key_values[b_idx] if past_key_values is not None else None
|
| 221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
if past_key_values is not None:
|
| 223 |
past_key_values[b_idx] = past_key_value
|
| 224 |
if output_attentions:
|
|
|
|
| 30 |
base_model_prefix = 'model'
|
| 31 |
_no_split_modules = ['MPTBlock']
|
| 32 |
|
| 33 |
+
supports_gradient_checkpointing = True
|
| 34 |
+
|
| 35 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 36 |
+
if isinstance(module, MPTModel):
|
| 37 |
+
module.gradient_checkpointing = value
|
| 38 |
+
|
| 39 |
class MPTModel(MPTPreTrainedModel):
|
| 40 |
|
| 41 |
def __init__(self, config: MPTConfig):
|
| 42 |
config._validate_config()
|
| 43 |
super().__init__(config)
|
| 44 |
+
self.gradient_checkpointing = False
|
| 45 |
self.attn_impl = config.attn_config['attn_impl']
|
| 46 |
self.prefix_lm = config.attn_config['prefix_lm']
|
| 47 |
self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
|
|
|
|
| 151 |
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor] = None):
|
| 152 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
| 153 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 154 |
+
if self.gradient_checkpointing and self.training:
|
| 155 |
+
if use_cache:
|
| 156 |
+
use_cache = False
|
| 157 |
if input_ids is not None and inputs_embeds is not None:
|
| 158 |
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
| 159 |
elif input_ids is not None:
|
|
|
|
| 228 |
assert all_hidden_states is not None
|
| 229 |
all_hidden_states = all_hidden_states + (x,)
|
| 230 |
past_key_value = past_key_values[b_idx] if past_key_values is not None else None
|
| 231 |
+
if self.gradient_checkpointing and self.training:
|
| 232 |
+
def create_custom_forward(module):
|
| 233 |
+
def custom_forward(*inputs):
|
| 234 |
+
# None for past_key_value
|
| 235 |
+
return module(*inputs)
|
| 236 |
+
return custom_forward
|
| 237 |
+
(x, attn_weights, past_key_value) = torch.utils.checkpoint.checkpoint(
|
| 238 |
+
create_custom_forward(block),
|
| 239 |
+
x,
|
| 240 |
+
past_key_value,
|
| 241 |
+
attn_bias,
|
| 242 |
+
attention_mask,
|
| 243 |
+
self.is_causal,
|
| 244 |
+
)
|
| 245 |
+
else:
|
| 246 |
+
(x, attn_weights, past_key_value) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=self.is_causal)
|
| 247 |
+
# (x, attn_weights, past_key_value) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=self.is_causal)
|
| 248 |
if past_key_values is not None:
|
| 249 |
past_key_values[b_idx] = past_key_value
|
| 250 |
if output_attentions:
|