Training run v20250727_161609 - F1: 88.0907, EM: 79.2999
Browse files- README.md +9 -9
- eval_results.json +2 -2
- model.safetensors +1 -1
- training_config.json +4 -4
README.md
CHANGED
|
@@ -22,7 +22,7 @@ model-index:
|
|
| 22 |
- type: exact_match
|
| 23 |
value: N/A
|
| 24 |
- type: f1
|
| 25 |
-
value:
|
| 26 |
---
|
| 27 |
|
| 28 |
# albert-base-v2 fine-tuned on SQuAD
|
|
@@ -37,17 +37,17 @@ This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/al
|
|
| 37 |
- **Dataset**: SQuAD
|
| 38 |
- **Optimizer**: adamw
|
| 39 |
- **Learning Rate Scheduler**: cosine_with_restarts
|
| 40 |
-
- **Learning Rate**:
|
| 41 |
-
- **Batch Size**:
|
| 42 |
-
- **Total Batch Size**:
|
| 43 |
-
- **Epochs**:
|
| 44 |
- **Weight Decay**: 0.005
|
| 45 |
- **Warmup Ratio**: 0.03
|
| 46 |
- **Max Gradient Norm**: 0.5
|
| 47 |
|
| 48 |
### Early Stopping
|
| 49 |
|
| 50 |
-
- **Patience**:
|
| 51 |
- **Metric**: f1
|
| 52 |
- **Best Epoch**: 2
|
| 53 |
|
|
@@ -78,11 +78,11 @@ print(f"Answer: {answer}")
|
|
| 78 |
|
| 79 |
The model achieved the following results on the evaluation set:
|
| 80 |
|
| 81 |
-
- **Exact Match**:
|
| 82 |
-
- **F1 Score**: 88.
|
| 83 |
|
| 84 |
## Training Configuration Hash
|
| 85 |
|
| 86 |
-
Config Hash:
|
| 87 |
|
| 88 |
This hash can be used to reproduce the exact training configuration.
|
|
|
|
| 22 |
- type: exact_match
|
| 23 |
value: N/A
|
| 24 |
- type: f1
|
| 25 |
+
value: 89.56708898636393
|
| 26 |
---
|
| 27 |
|
| 28 |
# albert-base-v2 fine-tuned on SQuAD
|
|
|
|
| 37 |
- **Dataset**: SQuAD
|
| 38 |
- **Optimizer**: adamw
|
| 39 |
- **Learning Rate Scheduler**: cosine_with_restarts
|
| 40 |
+
- **Learning Rate**: 8e-05
|
| 41 |
+
- **Batch Size**: 24 per device
|
| 42 |
+
- **Total Batch Size**: 192
|
| 43 |
+
- **Epochs**: 6 (with early stopping)
|
| 44 |
- **Weight Decay**: 0.005
|
| 45 |
- **Warmup Ratio**: 0.03
|
| 46 |
- **Max Gradient Norm**: 0.5
|
| 47 |
|
| 48 |
### Early Stopping
|
| 49 |
|
| 50 |
+
- **Patience**: 4
|
| 51 |
- **Metric**: f1
|
| 52 |
- **Best Epoch**: 2
|
| 53 |
|
|
|
|
| 78 |
|
| 79 |
The model achieved the following results on the evaluation set:
|
| 80 |
|
| 81 |
+
- **Exact Match**: 79.2999
|
| 82 |
+
- **F1 Score**: 88.0907
|
| 83 |
|
| 84 |
## Training Configuration Hash
|
| 85 |
|
| 86 |
+
Config Hash: d92d5758
|
| 87 |
|
| 88 |
This hash can be used to reproduce the exact training configuration.
|
eval_results.json
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
{
|
| 2 |
-
"exact_match":
|
| 3 |
-
"f1":
|
| 4 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"exact_match": 82.05298013245033,
|
| 3 |
+
"f1": 89.56708898636393
|
| 4 |
}
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 44381360
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1c1b8a698d2b09adb89ae35f8dae34da1657e13cd438f720d72951743d65b517
|
| 3 |
size 44381360
|
training_config.json
CHANGED
|
@@ -10,9 +10,9 @@
|
|
| 10 |
"context_dropout": 0.05,
|
| 11 |
"question_paraphrasing": true,
|
| 12 |
"negative_sampling": true,
|
| 13 |
-
"batch_size":
|
| 14 |
-
"num_epochs":
|
| 15 |
-
"learning_rate":
|
| 16 |
"weight_decay": 0.005,
|
| 17 |
"warmup_ratio": 0.03,
|
| 18 |
"gradient_accumulation_steps": 2,
|
|
@@ -27,7 +27,7 @@
|
|
| 27 |
"scheduler_power": 0.5,
|
| 28 |
"scheduler_eta_min": 5e-07,
|
| 29 |
"scheduler_num_cycles": 0.5,
|
| 30 |
-
"early_stopping_patience":
|
| 31 |
"early_stopping_threshold": 0.0002,
|
| 32 |
"early_stopping_metric": "f1",
|
| 33 |
"log_interval": 50,
|
|
|
|
| 10 |
"context_dropout": 0.05,
|
| 11 |
"question_paraphrasing": true,
|
| 12 |
"negative_sampling": true,
|
| 13 |
+
"batch_size": 24,
|
| 14 |
+
"num_epochs": 6,
|
| 15 |
+
"learning_rate": 8e-05,
|
| 16 |
"weight_decay": 0.005,
|
| 17 |
"warmup_ratio": 0.03,
|
| 18 |
"gradient_accumulation_steps": 2,
|
|
|
|
| 27 |
"scheduler_power": 0.5,
|
| 28 |
"scheduler_eta_min": 5e-07,
|
| 29 |
"scheduler_num_cycles": 0.5,
|
| 30 |
+
"early_stopping_patience": 4,
|
| 31 |
"early_stopping_threshold": 0.0002,
|
| 32 |
"early_stopping_metric": "f1",
|
| 33 |
"log_interval": 50,
|