Delete diffusiondet/modeling_diffusiondet.py
Browse files
diffusiondet/modeling_diffusiondet.py
DELETED
|
@@ -1,424 +0,0 @@
|
|
| 1 |
-
import math
|
| 2 |
-
import random
|
| 3 |
-
from collections import namedtuple, OrderedDict
|
| 4 |
-
from dataclasses import dataclass
|
| 5 |
-
from typing import Dict, List, Optional, Tuple, Union
|
| 6 |
-
|
| 7 |
-
import torch
|
| 8 |
-
from torch import nn
|
| 9 |
-
import torch.nn.functional as F
|
| 10 |
-
from torchvision import ops
|
| 11 |
-
from torchvision.ops.feature_pyramid_network import FeaturePyramidNetwork
|
| 12 |
-
from transformers import PreTrainedModel
|
| 13 |
-
import wandb
|
| 14 |
-
|
| 15 |
-
from transformers.utils.backbone_utils import load_backbone
|
| 16 |
-
from .configuration_diffusiondet import DiffusionDetConfig
|
| 17 |
-
|
| 18 |
-
from .head import HeadDynamicK
|
| 19 |
-
from .loss import CriterionDynamicK
|
| 20 |
-
|
| 21 |
-
from transformers.utils import ModelOutput
|
| 22 |
-
|
| 23 |
-
ModelPrediction = namedtuple('ModelPrediction', ['pred_noise', 'pred_x_start'])
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
def default(val, d):
|
| 27 |
-
if val is not None:
|
| 28 |
-
return val
|
| 29 |
-
return d() if callable(d) else d
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
def extract(a, t, x_shape):
|
| 33 |
-
"""extract the appropriate t index for a batch of indices"""
|
| 34 |
-
batch_size = t.shape[0]
|
| 35 |
-
out = a.gather(-1, t)
|
| 36 |
-
return out.reshape(batch_size, *((1,) * (len(x_shape) - 1)))
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
def cosine_beta_schedule(timesteps, s=0.008):
|
| 40 |
-
"""
|
| 41 |
-
cosine schedule
|
| 42 |
-
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
|
| 43 |
-
"""
|
| 44 |
-
steps = timesteps + 1
|
| 45 |
-
x = torch.linspace(0, timesteps, steps)
|
| 46 |
-
alphas_cumprod = torch.cos(((x / timesteps) + s) / (1 + s) * math.pi * 0.5) ** 2
|
| 47 |
-
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
|
| 48 |
-
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
|
| 49 |
-
return torch.clip(betas, 0, 0.999)
|
| 50 |
-
|
| 51 |
-
@dataclass
|
| 52 |
-
class DiffusionDetOutput(ModelOutput):
|
| 53 |
-
"""
|
| 54 |
-
Output type of DiffusionDet.
|
| 55 |
-
"""
|
| 56 |
-
|
| 57 |
-
loss: Optional[torch.FloatTensor] = None
|
| 58 |
-
loss_dict: Optional[Dict] = None
|
| 59 |
-
logits: torch.FloatTensor = None
|
| 60 |
-
labels: torch.IntTensor = None
|
| 61 |
-
pred_boxes: torch.FloatTensor = None
|
| 62 |
-
|
| 63 |
-
class DiffusionDet(PreTrainedModel):
|
| 64 |
-
"""
|
| 65 |
-
Implement DiffusionDet
|
| 66 |
-
"""
|
| 67 |
-
config_class = DiffusionDetConfig
|
| 68 |
-
main_input_name = "pixel_values"
|
| 69 |
-
|
| 70 |
-
def __init__(self, config):
|
| 71 |
-
super(DiffusionDet, self).__init__(config)
|
| 72 |
-
|
| 73 |
-
self.in_features = config.roi_head_in_features
|
| 74 |
-
self.num_classes = config.num_labels
|
| 75 |
-
self.num_proposals = config.num_proposals
|
| 76 |
-
self.num_heads = config.num_heads
|
| 77 |
-
|
| 78 |
-
self.backbone = load_backbone(config)
|
| 79 |
-
self.fpn = FeaturePyramidNetwork(
|
| 80 |
-
in_channels_list=self.backbone.channels,
|
| 81 |
-
out_channels=config.fpn_out_channels,
|
| 82 |
-
# extra_blocks=LastLevelMaxPool(),
|
| 83 |
-
)
|
| 84 |
-
|
| 85 |
-
# build diffusion
|
| 86 |
-
betas = cosine_beta_schedule(1000)
|
| 87 |
-
alphas_cumprod = torch.cumprod(1 - betas, dim=0)
|
| 88 |
-
|
| 89 |
-
timesteps, = betas.shape
|
| 90 |
-
sampling_timesteps = config.sample_step
|
| 91 |
-
|
| 92 |
-
self.register_buffer('alphas_cumprod', alphas_cumprod)
|
| 93 |
-
self.register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - alphas_cumprod))
|
| 94 |
-
self.register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod))
|
| 95 |
-
self.register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod))
|
| 96 |
-
self.register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1))
|
| 97 |
-
|
| 98 |
-
self.num_timesteps = int(timesteps)
|
| 99 |
-
self.sampling_timesteps = default(sampling_timesteps, timesteps)
|
| 100 |
-
self.ddim_sampling_eta = 1.
|
| 101 |
-
self.scale = config.snr_scale
|
| 102 |
-
assert self.sampling_timesteps <= timesteps
|
| 103 |
-
|
| 104 |
-
roi_input_shape = {
|
| 105 |
-
'p2': {'stride': 4},
|
| 106 |
-
'p3': {'stride': 8},
|
| 107 |
-
'p4': {'stride': 16},
|
| 108 |
-
'p5': {'stride': 32},
|
| 109 |
-
'p6': {'stride': 64}
|
| 110 |
-
}
|
| 111 |
-
self.head = HeadDynamicK(config, roi_input_shape=roi_input_shape)
|
| 112 |
-
|
| 113 |
-
self.deep_supervision = config.deep_supervision
|
| 114 |
-
self.use_focal = config.use_focal
|
| 115 |
-
self.use_fed_loss = config.use_fed_loss
|
| 116 |
-
self.use_nms = config.use_nms
|
| 117 |
-
|
| 118 |
-
weight_dict = {
|
| 119 |
-
"loss_ce": config.class_weight, "loss_bbox": config.l1_weight, "loss_giou": config.giou_weight
|
| 120 |
-
}
|
| 121 |
-
if self.deep_supervision:
|
| 122 |
-
aux_weight_dict = {}
|
| 123 |
-
for i in range(self.num_heads - 1):
|
| 124 |
-
aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()})
|
| 125 |
-
weight_dict.update(aux_weight_dict)
|
| 126 |
-
|
| 127 |
-
self.criterion = CriterionDynamicK(config, num_classes=self.num_classes, weight_dict=weight_dict)
|
| 128 |
-
|
| 129 |
-
def predict_noise_from_start(self, x_t, t, x0):
|
| 130 |
-
return (
|
| 131 |
-
(extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - x0) /
|
| 132 |
-
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
| 133 |
-
)
|
| 134 |
-
|
| 135 |
-
def model_predictions(self, backbone_feats, images_whwh, x, t):
|
| 136 |
-
x_boxes = torch.clamp(x, min=-1 * self.scale, max=self.scale)
|
| 137 |
-
x_boxes = ((x_boxes / self.scale) + 1) / 2
|
| 138 |
-
x_boxes = ops.box_convert(x_boxes, 'cxcywh', 'xyxy')
|
| 139 |
-
x_boxes = x_boxes * images_whwh[:, None, :]
|
| 140 |
-
outputs_class, outputs_coord = self.head(backbone_feats, x_boxes, t)
|
| 141 |
-
|
| 142 |
-
x_start = outputs_coord[-1] # (batch, num_proposals, 4) predict boxes: absolute coordinates (x1, y1, x2, y2)
|
| 143 |
-
x_start = x_start / images_whwh[:, None, :]
|
| 144 |
-
x_start = ops.box_convert(x_start, 'xyxy', 'cxcywh')
|
| 145 |
-
x_start = (x_start * 2 - 1.) * self.scale
|
| 146 |
-
x_start = torch.clamp(x_start, min=-1 * self.scale, max=self.scale)
|
| 147 |
-
pred_noise = self.predict_noise_from_start(x, t, x_start)
|
| 148 |
-
|
| 149 |
-
return ModelPrediction(pred_noise, x_start), outputs_class, outputs_coord
|
| 150 |
-
|
| 151 |
-
@torch.no_grad()
|
| 152 |
-
def ddim_sample(self, batched_inputs, backbone_feats, images_whwh):
|
| 153 |
-
bs = len(batched_inputs)
|
| 154 |
-
image_sizes = batched_inputs.shape
|
| 155 |
-
shape = (bs, self.num_proposals, 4)
|
| 156 |
-
|
| 157 |
-
# [-1, 0, 1, 2, ..., T-1] when sampling_timesteps == total_timesteps
|
| 158 |
-
times = torch.linspace(-1, self.num_timesteps - 1, steps=self.sampling_timesteps + 1)
|
| 159 |
-
times = list(reversed(times.int().tolist()))
|
| 160 |
-
time_pairs = list(zip(times[:-1], times[1:])) # [(T-1, T-2), (T-2, T-3), ..., (1, 0), (0, -1)]
|
| 161 |
-
|
| 162 |
-
img = torch.randn(shape, device=self.device)
|
| 163 |
-
|
| 164 |
-
ensemble_score, ensemble_label, ensemble_coord = [], [], []
|
| 165 |
-
outputs_class, outputs_coord = None, None
|
| 166 |
-
for time, time_next in time_pairs:
|
| 167 |
-
time_cond = torch.full((bs,), time, device=self.device, dtype=torch.long)
|
| 168 |
-
|
| 169 |
-
preds, outputs_class, outputs_coord = self.model_predictions(backbone_feats, images_whwh, img, time_cond)
|
| 170 |
-
pred_noise, x_start = preds.pred_noise, preds.pred_x_start
|
| 171 |
-
|
| 172 |
-
score_per_image, box_per_image = outputs_class[-1][0], outputs_coord[-1][0]
|
| 173 |
-
threshold = 0.5
|
| 174 |
-
score_per_image = torch.sigmoid(score_per_image)
|
| 175 |
-
value, _ = torch.max(score_per_image, -1, keepdim=False)
|
| 176 |
-
keep_idx = value > threshold
|
| 177 |
-
num_remain = torch.sum(keep_idx)
|
| 178 |
-
|
| 179 |
-
pred_noise = pred_noise[:, keep_idx, :]
|
| 180 |
-
x_start = x_start[:, keep_idx, :]
|
| 181 |
-
img = img[:, keep_idx, :]
|
| 182 |
-
|
| 183 |
-
if time_next < 0:
|
| 184 |
-
img = x_start
|
| 185 |
-
continue
|
| 186 |
-
|
| 187 |
-
alpha = self.alphas_cumprod[time]
|
| 188 |
-
alpha_next = self.alphas_cumprod[time_next]
|
| 189 |
-
|
| 190 |
-
sigma = self.ddim_sampling_eta * ((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha)).sqrt()
|
| 191 |
-
c = (1 - alpha_next - sigma ** 2).sqrt()
|
| 192 |
-
|
| 193 |
-
noise = torch.randn_like(img)
|
| 194 |
-
|
| 195 |
-
img = x_start * alpha_next.sqrt() + \
|
| 196 |
-
c * pred_noise + \
|
| 197 |
-
sigma * noise
|
| 198 |
-
|
| 199 |
-
img = torch.cat((img, torch.randn(1, self.num_proposals - num_remain, 4, device=img.device)), dim=1)
|
| 200 |
-
|
| 201 |
-
if self.sampling_timesteps > 1:
|
| 202 |
-
box_pred_per_image, scores_per_image, labels_per_image = self.inference(outputs_class[-1],
|
| 203 |
-
outputs_coord[-1])
|
| 204 |
-
ensemble_score.append(scores_per_image)
|
| 205 |
-
ensemble_label.append(labels_per_image)
|
| 206 |
-
ensemble_coord.append(box_pred_per_image)
|
| 207 |
-
|
| 208 |
-
if self.sampling_timesteps > 1:
|
| 209 |
-
box_pred_per_image = torch.cat(ensemble_coord, dim=0)
|
| 210 |
-
scores_per_image = torch.cat(ensemble_score, dim=0)
|
| 211 |
-
labels_per_image = torch.cat(ensemble_label, dim=0)
|
| 212 |
-
|
| 213 |
-
if self.use_nms:
|
| 214 |
-
keep = ops.batched_nms(box_pred_per_image, scores_per_image, labels_per_image, 0.5)
|
| 215 |
-
box_pred_per_image = box_pred_per_image[keep]
|
| 216 |
-
scores_per_image = scores_per_image[keep]
|
| 217 |
-
labels_per_image = labels_per_image[keep]
|
| 218 |
-
|
| 219 |
-
return box_pred_per_image, scores_per_image, labels_per_image
|
| 220 |
-
else:
|
| 221 |
-
return self.inference(outputs_class[-1], outputs_coord[-1])
|
| 222 |
-
|
| 223 |
-
def q_sample(self, x_start, t, noise=None):
|
| 224 |
-
if noise is None:
|
| 225 |
-
noise = torch.randn_like(x_start)
|
| 226 |
-
|
| 227 |
-
sqrt_alphas_cumprod_t = extract(self.sqrt_alphas_cumprod, t, x_start.shape)
|
| 228 |
-
sqrt_one_minus_alphas_cumprod_t = extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
|
| 229 |
-
|
| 230 |
-
return sqrt_alphas_cumprod_t * x_start + sqrt_one_minus_alphas_cumprod_t * noise
|
| 231 |
-
|
| 232 |
-
def forward(self, pixel_values, labels):
|
| 233 |
-
"""
|
| 234 |
-
Args:
|
| 235 |
-
"""
|
| 236 |
-
images = pixel_values.to(self.device)
|
| 237 |
-
images_whwh = list()
|
| 238 |
-
for image in images:
|
| 239 |
-
h, w = image.shape[-2:]
|
| 240 |
-
images_whwh.append(torch.tensor([w, h, w, h], device=self.device))
|
| 241 |
-
images_whwh = torch.stack(images_whwh)
|
| 242 |
-
|
| 243 |
-
features = self.backbone(images)
|
| 244 |
-
features = OrderedDict(
|
| 245 |
-
[(key, feature) for key, feature in zip(self.backbone.out_features, features.feature_maps)]
|
| 246 |
-
)
|
| 247 |
-
features = self.fpn(features) # [144, 72, 36, 18]
|
| 248 |
-
features = [features[f] for f in features.keys()]
|
| 249 |
-
|
| 250 |
-
# if self.training:
|
| 251 |
-
labels = list(map(lambda tensor: tensor.to(self.device), labels))
|
| 252 |
-
targets, x_boxes, noises, ts = self.prepare_targets(labels)
|
| 253 |
-
|
| 254 |
-
ts = ts.squeeze(-1)
|
| 255 |
-
x_boxes = x_boxes * images_whwh[:, None, :]
|
| 256 |
-
|
| 257 |
-
outputs_class, outputs_coord = self.head(features, x_boxes, ts)
|
| 258 |
-
output = {'pred_logits': outputs_class[-1], 'pred_boxes': outputs_coord[-1]}
|
| 259 |
-
|
| 260 |
-
if self.deep_supervision:
|
| 261 |
-
output['aux_outputs'] = [{'pred_logits': a, 'pred_boxes': b}
|
| 262 |
-
for a, b in zip(outputs_class[:-1], outputs_coord[:-1])]
|
| 263 |
-
|
| 264 |
-
loss_dict = self.criterion(output, targets)
|
| 265 |
-
weight_dict = self.criterion.weight_dict
|
| 266 |
-
for k in loss_dict.keys():
|
| 267 |
-
if k in weight_dict:
|
| 268 |
-
loss_dict[k] *= weight_dict[k]
|
| 269 |
-
loss_dict['loss'] = sum([loss_dict[k] for k in weight_dict.keys()])
|
| 270 |
-
|
| 271 |
-
wandb_logs_values = ["loss_ce", "loss_bbox", "loss_giou"]
|
| 272 |
-
|
| 273 |
-
if self.training:
|
| 274 |
-
wandb.log({f'train/{k}': v.detach().cpu().numpy() for k, v in loss_dict.items() if k in wandb_logs_values})
|
| 275 |
-
else:
|
| 276 |
-
wandb.log({f'eval/{k}': v.detach().cpu().numpy() for k, v in loss_dict.items() if k in wandb_logs_values})
|
| 277 |
-
|
| 278 |
-
if not self.training:
|
| 279 |
-
pred_logits, pred_labels, pred_boxes = self.ddim_sample(pixel_values, features, images_whwh)
|
| 280 |
-
return DiffusionDetOutput(
|
| 281 |
-
loss=loss_dict['loss'],
|
| 282 |
-
loss_dict=loss_dict,
|
| 283 |
-
logits=pred_logits,
|
| 284 |
-
labels=pred_labels,
|
| 285 |
-
pred_boxes=pred_boxes,
|
| 286 |
-
)
|
| 287 |
-
|
| 288 |
-
return DiffusionDetOutput(
|
| 289 |
-
loss=loss_dict['loss'],
|
| 290 |
-
loss_dict=loss_dict,
|
| 291 |
-
logits=output['pred_logits'],
|
| 292 |
-
pred_boxes=output['pred_boxes']
|
| 293 |
-
)
|
| 294 |
-
|
| 295 |
-
def prepare_diffusion_concat(self, gt_boxes):
|
| 296 |
-
"""
|
| 297 |
-
:param gt_boxes: (cx, cy, w, h), normalized
|
| 298 |
-
:param num_proposals:
|
| 299 |
-
"""
|
| 300 |
-
t = torch.randint(0, self.num_timesteps, (1,), device=self.device).long()
|
| 301 |
-
noise = torch.randn(self.num_proposals, 4, device=self.device)
|
| 302 |
-
|
| 303 |
-
num_gt = gt_boxes.shape[0]
|
| 304 |
-
if not num_gt: # generate fake gt boxes if empty gt boxes
|
| 305 |
-
gt_boxes = torch.as_tensor([[0.5, 0.5, 1., 1.]], dtype=torch.float, device=self.device)
|
| 306 |
-
num_gt = 1
|
| 307 |
-
|
| 308 |
-
if num_gt < self.num_proposals:
|
| 309 |
-
box_placeholder = torch.randn(self.num_proposals - num_gt, 4,
|
| 310 |
-
device=self.device) / 6. + 0.5 # 3sigma = 1/2 --> sigma: 1/6
|
| 311 |
-
box_placeholder[:, 2:] = torch.clip(box_placeholder[:, 2:], min=1e-4)
|
| 312 |
-
x_start = torch.cat((gt_boxes, box_placeholder), dim=0)
|
| 313 |
-
elif num_gt > self.num_proposals:
|
| 314 |
-
select_mask = [True] * self.num_proposals + [False] * (num_gt - self.num_proposals)
|
| 315 |
-
random.shuffle(select_mask)
|
| 316 |
-
x_start = gt_boxes[select_mask]
|
| 317 |
-
else:
|
| 318 |
-
x_start = gt_boxes
|
| 319 |
-
|
| 320 |
-
x_start = (x_start * 2. - 1.) * self.scale
|
| 321 |
-
|
| 322 |
-
# noise sample
|
| 323 |
-
x = self.q_sample(x_start=x_start, t=t, noise=noise)
|
| 324 |
-
|
| 325 |
-
x = torch.clamp(x, min=-1 * self.scale, max=self.scale)
|
| 326 |
-
x = ((x / self.scale) + 1) / 2.
|
| 327 |
-
|
| 328 |
-
diff_boxes = ops.box_convert(x, 'cxcywh', 'xyxy')
|
| 329 |
-
|
| 330 |
-
return diff_boxes, noise, t
|
| 331 |
-
|
| 332 |
-
def prepare_targets(self, targets):
|
| 333 |
-
new_targets = []
|
| 334 |
-
diffused_boxes = []
|
| 335 |
-
noises = []
|
| 336 |
-
ts = []
|
| 337 |
-
for target in targets:
|
| 338 |
-
h, w = target.size
|
| 339 |
-
image_size_xyxy = torch.as_tensor([w, h, w, h], dtype=torch.float, device=self.device)
|
| 340 |
-
gt_classes = target.class_labels.to(self.device)
|
| 341 |
-
gt_boxes = target.boxes.to(self.device)
|
| 342 |
-
d_boxes, d_noise, d_t = self.prepare_diffusion_concat(gt_boxes)
|
| 343 |
-
image_size_xyxy_tgt = image_size_xyxy.unsqueeze(0).repeat(len(gt_boxes), 1)
|
| 344 |
-
gt_boxes = gt_boxes * image_size_xyxy
|
| 345 |
-
gt_boxes = ops.box_convert(gt_boxes, 'cxcywh', 'xyxy')
|
| 346 |
-
|
| 347 |
-
diffused_boxes.append(d_boxes)
|
| 348 |
-
noises.append(d_noise)
|
| 349 |
-
ts.append(d_t)
|
| 350 |
-
new_targets.append({
|
| 351 |
-
"labels": gt_classes,
|
| 352 |
-
"boxes": target.boxes.to(self.device),
|
| 353 |
-
"boxes_xyxy": gt_boxes,
|
| 354 |
-
"image_size_xyxy": image_size_xyxy.to(self.device),
|
| 355 |
-
"image_size_xyxy_tgt": image_size_xyxy_tgt.to(self.device),
|
| 356 |
-
"area": ops.box_area(target.boxes.to(self.device)),
|
| 357 |
-
})
|
| 358 |
-
|
| 359 |
-
return new_targets, torch.stack(diffused_boxes), torch.stack(noises), torch.stack(ts)
|
| 360 |
-
|
| 361 |
-
def inference(self, box_cls, box_pred):
|
| 362 |
-
"""
|
| 363 |
-
Arguments:
|
| 364 |
-
box_cls (Tensor): tensor of shape (batch_size, num_proposals, K).
|
| 365 |
-
The tensor predicts the classification probability for each proposal.
|
| 366 |
-
box_pred (Tensor): tensors of shape (batch_size, num_proposals, 4).
|
| 367 |
-
The tensor predicts 4-vector (x,y,w,h) box
|
| 368 |
-
regression values for every proposal
|
| 369 |
-
image_sizes (List[torch.Size]): the input image sizes
|
| 370 |
-
|
| 371 |
-
Returns:
|
| 372 |
-
results (List[Instances]): a list of #images elements.
|
| 373 |
-
"""
|
| 374 |
-
results = []
|
| 375 |
-
boxes_output = []
|
| 376 |
-
logits_output = []
|
| 377 |
-
labels_output = []
|
| 378 |
-
|
| 379 |
-
if self.use_focal or self.use_fed_loss:
|
| 380 |
-
scores = torch.sigmoid(box_cls)
|
| 381 |
-
labels = torch.arange(self.num_classes, device=self.device). \
|
| 382 |
-
unsqueeze(0).repeat(self.num_proposals, 1).flatten(0, 1)
|
| 383 |
-
|
| 384 |
-
for i, (scores_per_image, box_pred_per_image) in enumerate(zip(
|
| 385 |
-
scores, box_pred
|
| 386 |
-
)):
|
| 387 |
-
scores_per_image, topk_indices = scores_per_image.flatten(0, 1).topk(self.num_proposals, sorted=False)
|
| 388 |
-
labels_per_image = labels[topk_indices]
|
| 389 |
-
box_pred_per_image = box_pred_per_image.view(-1, 1, 4).repeat(1, self.num_classes, 1).view(-1, 4)
|
| 390 |
-
box_pred_per_image = box_pred_per_image[topk_indices]
|
| 391 |
-
|
| 392 |
-
if self.sampling_timesteps > 1:
|
| 393 |
-
return box_pred_per_image, scores_per_image, labels_per_image
|
| 394 |
-
|
| 395 |
-
if self.use_nms:
|
| 396 |
-
keep = ops.batched_nms(box_pred_per_image, scores_per_image, labels_per_image, 0.5)
|
| 397 |
-
box_pred_per_image = box_pred_per_image[keep]
|
| 398 |
-
scores_per_image = scores_per_image[keep]
|
| 399 |
-
labels_per_image = labels_per_image[keep]
|
| 400 |
-
|
| 401 |
-
boxes_output.append(box_pred_per_image)
|
| 402 |
-
logits_output.append(scores_per_image)
|
| 403 |
-
labels_output.append(labels_per_image)
|
| 404 |
-
else:
|
| 405 |
-
# For each box we assign the best class or the second best if the best on is `no_object`.
|
| 406 |
-
scores, labels = F.softmax(box_cls, dim=-1)[:, :, :-1].max(-1)
|
| 407 |
-
|
| 408 |
-
for i, (scores_per_image, labels_per_image, box_pred_per_image) in enumerate(zip(
|
| 409 |
-
scores, labels, box_pred
|
| 410 |
-
)):
|
| 411 |
-
if self.sampling_timesteps > 1:
|
| 412 |
-
return box_pred_per_image, scores_per_image, labels_per_image
|
| 413 |
-
|
| 414 |
-
if self.use_nms:
|
| 415 |
-
keep = ops.batched_nms(box_pred_per_image, scores_per_image, labels_per_image, 0.5)
|
| 416 |
-
box_pred_per_image = box_pred_per_image[keep]
|
| 417 |
-
scores_per_image = scores_per_image[keep]
|
| 418 |
-
labels_per_image = labels_per_image[keep]
|
| 419 |
-
|
| 420 |
-
boxes_output.append(box_pred_per_image)
|
| 421 |
-
logits_output.append(scores_per_image)
|
| 422 |
-
labels_output.append(labels_per_image)
|
| 423 |
-
|
| 424 |
-
return boxes_output, logits_output, labels_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|