Hich Tala
commited on
Commit
·
383df45
1
Parent(s):
e396659
Remove wandb logging
Browse files- modeling_diffusiondet.py +3 -9
modeling_diffusiondet.py
CHANGED
|
@@ -10,7 +10,6 @@ import torch.nn.functional as F
|
|
| 10 |
from torchvision import ops
|
| 11 |
from torchvision.ops.feature_pyramid_network import FeaturePyramidNetwork
|
| 12 |
from transformers import PreTrainedModel
|
| 13 |
-
import wandb
|
| 14 |
|
| 15 |
from transformers.utils.backbone_utils import load_backbone
|
| 16 |
from .configuration_diffusiondet import DiffusionDetConfig
|
|
@@ -48,6 +47,7 @@ def cosine_beta_schedule(timesteps, s=0.008):
|
|
| 48 |
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
|
| 49 |
return torch.clip(betas, 0, 0.999)
|
| 50 |
|
|
|
|
| 51 |
@dataclass
|
| 52 |
class DiffusionDetOutput(ModelOutput):
|
| 53 |
"""
|
|
@@ -60,6 +60,7 @@ class DiffusionDetOutput(ModelOutput):
|
|
| 60 |
labels: torch.IntTensor = None
|
| 61 |
pred_boxes: torch.FloatTensor = None
|
| 62 |
|
|
|
|
| 63 |
class DiffusionDet(PreTrainedModel):
|
| 64 |
"""
|
| 65 |
Implement DiffusionDet
|
|
@@ -277,15 +278,8 @@ class DiffusionDet(PreTrainedModel):
|
|
| 277 |
loss_dict[k] *= weight_dict[k]
|
| 278 |
loss_dict['loss'] = sum([loss_dict[k] for k in weight_dict.keys()])
|
| 279 |
|
| 280 |
-
wandb_logs_values = ["loss_ce", "loss_bbox", "loss_giou"]
|
| 281 |
-
|
| 282 |
-
if self.training:
|
| 283 |
-
wandb.log({f'train/{k}': v.detach().cpu().numpy() for k, v in loss_dict.items() if k in wandb_logs_values})
|
| 284 |
-
else:
|
| 285 |
-
wandb.log({f'eval/{k}': v.detach().cpu().numpy() for k, v in loss_dict.items() if k in wandb_logs_values})
|
| 286 |
-
|
| 287 |
if not self.training:
|
| 288 |
-
pred_logits, pred_labels, pred_boxes
|
| 289 |
return DiffusionDetOutput(
|
| 290 |
loss=loss_dict['loss'],
|
| 291 |
loss_dict=loss_dict,
|
|
|
|
| 10 |
from torchvision import ops
|
| 11 |
from torchvision.ops.feature_pyramid_network import FeaturePyramidNetwork
|
| 12 |
from transformers import PreTrainedModel
|
|
|
|
| 13 |
|
| 14 |
from transformers.utils.backbone_utils import load_backbone
|
| 15 |
from .configuration_diffusiondet import DiffusionDetConfig
|
|
|
|
| 47 |
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
|
| 48 |
return torch.clip(betas, 0, 0.999)
|
| 49 |
|
| 50 |
+
|
| 51 |
@dataclass
|
| 52 |
class DiffusionDetOutput(ModelOutput):
|
| 53 |
"""
|
|
|
|
| 60 |
labels: torch.IntTensor = None
|
| 61 |
pred_boxes: torch.FloatTensor = None
|
| 62 |
|
| 63 |
+
|
| 64 |
class DiffusionDet(PreTrainedModel):
|
| 65 |
"""
|
| 66 |
Implement DiffusionDet
|
|
|
|
| 278 |
loss_dict[k] *= weight_dict[k]
|
| 279 |
loss_dict['loss'] = sum([loss_dict[k] for k in weight_dict.keys()])
|
| 280 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
if not self.training:
|
| 282 |
+
pred_logits, pred_labels, pred_boxes = self.ddim_sample(pixel_values, features, images_whwh)
|
| 283 |
return DiffusionDetOutput(
|
| 284 |
loss=loss_dict['loss'],
|
| 285 |
loss_dict=loss_dict,
|