JacobLinCool commited on
Commit
3c242b0
·
verified ·
1 Parent(s): 5fd2d8b

Model save

Browse files
Files changed (1) hide show
  1. README.md +28 -30
README.md CHANGED
@@ -230,7 +230,7 @@ model-index:
230
  type: unknown
231
  metrics:
232
  - type: cosine_accuracy@1
233
- value: 0.96
234
  name: Cosine Accuracy@1
235
  - type: cosine_accuracy@5
236
  value: 1.0
@@ -239,7 +239,7 @@ model-index:
239
  value: 1.0
240
  name: Cosine Accuracy@10
241
  - type: cosine_precision@1
242
- value: 0.96
243
  name: Cosine Precision@1
244
  - type: cosine_precision@3
245
  value: 0.3333333333333334
@@ -251,7 +251,7 @@ model-index:
251
  value: 0.09999999999999998
252
  name: Cosine Precision@10
253
  - type: cosine_recall@1
254
- value: 0.96
255
  name: Cosine Recall@1
256
  - type: cosine_recall@3
257
  value: 1.0
@@ -263,25 +263,25 @@ model-index:
263
  value: 1.0
264
  name: Cosine Recall@10
265
  - type: cosine_ndcg@1
266
- value: 0.96
267
  name: Cosine Ndcg@1
268
  - type: cosine_ndcg@5
269
- value: 0.9839278926071438
270
  name: Cosine Ndcg@5
271
  - type: cosine_ndcg@10
272
- value: 0.9839278926071438
273
  name: Cosine Ndcg@10
274
  - type: cosine_mrr@1
275
- value: 0.96
276
  name: Cosine Mrr@1
277
  - type: cosine_mrr@5
278
- value: 0.9783333333333333
279
  name: Cosine Mrr@5
280
  - type: cosine_mrr@10
281
- value: 0.9783333333333333
282
  name: Cosine Mrr@10
283
  - type: cosine_map@100
284
- value: 0.9783333333333333
285
  name: Cosine Map@100
286
  ---
287
 
@@ -350,7 +350,7 @@ print(query_embeddings.shape, document_embeddings.shape)
350
  # Get the similarity scores for the embeddings
351
  similarities = model.similarity(query_embeddings, document_embeddings)
352
  print(similarities)
353
- # tensor([[ 0.8839, -0.1092, 0.1013]])
354
  ```
355
 
356
  <!--
@@ -387,24 +387,24 @@ You can finetune this model on your own dataset.
387
 
388
  | Metric | Value |
389
  |:--------------------|:-----------|
390
- | cosine_accuracy@1 | 0.96 |
391
  | cosine_accuracy@5 | 1.0 |
392
  | cosine_accuracy@10 | 1.0 |
393
- | cosine_precision@1 | 0.96 |
394
  | cosine_precision@3 | 0.3333 |
395
  | cosine_precision@5 | 0.2 |
396
  | cosine_precision@10 | 0.1 |
397
- | cosine_recall@1 | 0.96 |
398
  | cosine_recall@3 | 1.0 |
399
  | cosine_recall@5 | 1.0 |
400
  | cosine_recall@10 | 1.0 |
401
- | cosine_ndcg@1 | 0.96 |
402
- | cosine_ndcg@5 | 0.9839 |
403
- | **cosine_ndcg@10** | **0.9839** |
404
- | cosine_mrr@1 | 0.96 |
405
- | cosine_mrr@5 | 0.9783 |
406
- | cosine_mrr@10 | 0.9783 |
407
- | cosine_map@100 | 0.9783 |
408
 
409
  <!--
410
  ## Bias, Risks and Limitations
@@ -476,9 +476,8 @@ You can finetune this model on your own dataset.
476
  #### Non-Default Hyperparameters
477
 
478
  - `eval_strategy`: epoch
479
- - `per_device_train_batch_size`: 4
480
- - `per_device_eval_batch_size`: 4
481
- - `gradient_accumulation_steps`: 4
482
  - `num_train_epochs`: 1
483
  - `warmup_ratio`: 0.1
484
  - `seed`: 2025
@@ -499,11 +498,11 @@ You can finetune this model on your own dataset.
499
  - `do_predict`: False
500
  - `eval_strategy`: epoch
501
  - `prediction_loss_only`: True
502
- - `per_device_train_batch_size`: 4
503
- - `per_device_eval_batch_size`: 4
504
  - `per_gpu_train_batch_size`: None
505
  - `per_gpu_eval_batch_size`: None
506
- - `gradient_accumulation_steps`: 4
507
  - `eval_accumulation_steps`: None
508
  - `torch_empty_cache_steps`: None
509
  - `learning_rate`: 5e-05
@@ -619,9 +618,8 @@ You can finetune this model on your own dataset.
619
  ### Training Logs
620
  | Epoch | Step | Validation Loss | cosine_ndcg@10 |
621
  |:-------:|:------:|:---------------:|:--------------:|
622
- | 0 | 0 | 0.0042 | 0.9926 |
623
- | **1.0** | **25** | **0.0014** | **0.9839** |
624
- | -1 | -1 | - | 0.9839 |
625
 
626
  * The bold row denotes the saved checkpoint.
627
 
 
230
  type: unknown
231
  metrics:
232
  - type: cosine_accuracy@1
233
+ value: 0.97
234
  name: Cosine Accuracy@1
235
  - type: cosine_accuracy@5
236
  value: 1.0
 
239
  value: 1.0
240
  name: Cosine Accuracy@10
241
  - type: cosine_precision@1
242
+ value: 0.97
243
  name: Cosine Precision@1
244
  - type: cosine_precision@3
245
  value: 0.3333333333333334
 
251
  value: 0.09999999999999998
252
  name: Cosine Precision@10
253
  - type: cosine_recall@1
254
+ value: 0.97
255
  name: Cosine Recall@1
256
  - type: cosine_recall@3
257
  value: 1.0
 
263
  value: 1.0
264
  name: Cosine Recall@10
265
  - type: cosine_ndcg@1
266
+ value: 0.97
267
  name: Cosine Ndcg@1
268
  - type: cosine_ndcg@5
269
+ value: 0.9889278926071438
270
  name: Cosine Ndcg@5
271
  - type: cosine_ndcg@10
272
+ value: 0.9889278926071438
273
  name: Cosine Ndcg@10
274
  - type: cosine_mrr@1
275
+ value: 0.97
276
  name: Cosine Mrr@1
277
  - type: cosine_mrr@5
278
+ value: 0.985
279
  name: Cosine Mrr@5
280
  - type: cosine_mrr@10
281
+ value: 0.985
282
  name: Cosine Mrr@10
283
  - type: cosine_map@100
284
+ value: 0.985
285
  name: Cosine Map@100
286
  ---
287
 
 
350
  # Get the similarity scores for the embeddings
351
  similarities = model.similarity(query_embeddings, document_embeddings)
352
  print(similarities)
353
+ # tensor([[ 0.8193, -0.1132, 0.0397]])
354
  ```
355
 
356
  <!--
 
387
 
388
  | Metric | Value |
389
  |:--------------------|:-----------|
390
+ | cosine_accuracy@1 | 0.97 |
391
  | cosine_accuracy@5 | 1.0 |
392
  | cosine_accuracy@10 | 1.0 |
393
+ | cosine_precision@1 | 0.97 |
394
  | cosine_precision@3 | 0.3333 |
395
  | cosine_precision@5 | 0.2 |
396
  | cosine_precision@10 | 0.1 |
397
+ | cosine_recall@1 | 0.97 |
398
  | cosine_recall@3 | 1.0 |
399
  | cosine_recall@5 | 1.0 |
400
  | cosine_recall@10 | 1.0 |
401
+ | cosine_ndcg@1 | 0.97 |
402
+ | cosine_ndcg@5 | 0.9889 |
403
+ | **cosine_ndcg@10** | **0.9889** |
404
+ | cosine_mrr@1 | 0.97 |
405
+ | cosine_mrr@5 | 0.985 |
406
+ | cosine_mrr@10 | 0.985 |
407
+ | cosine_map@100 | 0.985 |
408
 
409
  <!--
410
  ## Bias, Risks and Limitations
 
476
  #### Non-Default Hyperparameters
477
 
478
  - `eval_strategy`: epoch
479
+ - `per_device_train_batch_size`: 16
480
+ - `per_device_eval_batch_size`: 16
 
481
  - `num_train_epochs`: 1
482
  - `warmup_ratio`: 0.1
483
  - `seed`: 2025
 
498
  - `do_predict`: False
499
  - `eval_strategy`: epoch
500
  - `prediction_loss_only`: True
501
+ - `per_device_train_batch_size`: 16
502
+ - `per_device_eval_batch_size`: 16
503
  - `per_gpu_train_batch_size`: None
504
  - `per_gpu_eval_batch_size`: None
505
+ - `gradient_accumulation_steps`: 1
506
  - `eval_accumulation_steps`: None
507
  - `torch_empty_cache_steps`: None
508
  - `learning_rate`: 5e-05
 
618
  ### Training Logs
619
  | Epoch | Step | Validation Loss | cosine_ndcg@10 |
620
  |:-------:|:------:|:---------------:|:--------------:|
621
+ | 0 | 0 | 0.0191 | 0.9926 |
622
+ | **1.0** | **25** | **0.0061** | **0.9889** |
 
623
 
624
  * The bold row denotes the saved checkpoint.
625