Model save
Browse files
README.md
CHANGED
|
@@ -230,7 +230,7 @@ model-index:
|
|
| 230 |
type: unknown
|
| 231 |
metrics:
|
| 232 |
- type: cosine_accuracy@1
|
| 233 |
-
value: 0.
|
| 234 |
name: Cosine Accuracy@1
|
| 235 |
- type: cosine_accuracy@5
|
| 236 |
value: 1.0
|
|
@@ -239,7 +239,7 @@ model-index:
|
|
| 239 |
value: 1.0
|
| 240 |
name: Cosine Accuracy@10
|
| 241 |
- type: cosine_precision@1
|
| 242 |
-
value: 0.
|
| 243 |
name: Cosine Precision@1
|
| 244 |
- type: cosine_precision@3
|
| 245 |
value: 0.3333333333333334
|
|
@@ -251,7 +251,7 @@ model-index:
|
|
| 251 |
value: 0.09999999999999998
|
| 252 |
name: Cosine Precision@10
|
| 253 |
- type: cosine_recall@1
|
| 254 |
-
value: 0.
|
| 255 |
name: Cosine Recall@1
|
| 256 |
- type: cosine_recall@3
|
| 257 |
value: 1.0
|
|
@@ -263,25 +263,25 @@ model-index:
|
|
| 263 |
value: 1.0
|
| 264 |
name: Cosine Recall@10
|
| 265 |
- type: cosine_ndcg@1
|
| 266 |
-
value: 0.
|
| 267 |
name: Cosine Ndcg@1
|
| 268 |
- type: cosine_ndcg@5
|
| 269 |
-
value: 0.
|
| 270 |
name: Cosine Ndcg@5
|
| 271 |
- type: cosine_ndcg@10
|
| 272 |
-
value: 0.
|
| 273 |
name: Cosine Ndcg@10
|
| 274 |
- type: cosine_mrr@1
|
| 275 |
-
value: 0.
|
| 276 |
name: Cosine Mrr@1
|
| 277 |
- type: cosine_mrr@5
|
| 278 |
-
value: 0.
|
| 279 |
name: Cosine Mrr@5
|
| 280 |
- type: cosine_mrr@10
|
| 281 |
-
value: 0.
|
| 282 |
name: Cosine Mrr@10
|
| 283 |
- type: cosine_map@100
|
| 284 |
-
value: 0.
|
| 285 |
name: Cosine Map@100
|
| 286 |
---
|
| 287 |
|
|
@@ -350,7 +350,7 @@ print(query_embeddings.shape, document_embeddings.shape)
|
|
| 350 |
# Get the similarity scores for the embeddings
|
| 351 |
similarities = model.similarity(query_embeddings, document_embeddings)
|
| 352 |
print(similarities)
|
| 353 |
-
# tensor([[ 0.
|
| 354 |
```
|
| 355 |
|
| 356 |
<!--
|
|
@@ -387,24 +387,24 @@ You can finetune this model on your own dataset.
|
|
| 387 |
|
| 388 |
| Metric | Value |
|
| 389 |
|:--------------------|:-----------|
|
| 390 |
-
| cosine_accuracy@1 | 0.
|
| 391 |
| cosine_accuracy@5 | 1.0 |
|
| 392 |
| cosine_accuracy@10 | 1.0 |
|
| 393 |
-
| cosine_precision@1 | 0.
|
| 394 |
| cosine_precision@3 | 0.3333 |
|
| 395 |
| cosine_precision@5 | 0.2 |
|
| 396 |
| cosine_precision@10 | 0.1 |
|
| 397 |
-
| cosine_recall@1 | 0.
|
| 398 |
| cosine_recall@3 | 1.0 |
|
| 399 |
| cosine_recall@5 | 1.0 |
|
| 400 |
| cosine_recall@10 | 1.0 |
|
| 401 |
-
| cosine_ndcg@1 | 0.
|
| 402 |
-
| cosine_ndcg@5 | 0.
|
| 403 |
-
| **cosine_ndcg@10** | **0.
|
| 404 |
-
| cosine_mrr@1 | 0.
|
| 405 |
-
| cosine_mrr@5 | 0.
|
| 406 |
-
| cosine_mrr@10 | 0.
|
| 407 |
-
| cosine_map@100 | 0.
|
| 408 |
|
| 409 |
<!--
|
| 410 |
## Bias, Risks and Limitations
|
|
@@ -476,9 +476,8 @@ You can finetune this model on your own dataset.
|
|
| 476 |
#### Non-Default Hyperparameters
|
| 477 |
|
| 478 |
- `eval_strategy`: epoch
|
| 479 |
-
- `per_device_train_batch_size`:
|
| 480 |
-
- `per_device_eval_batch_size`:
|
| 481 |
-
- `gradient_accumulation_steps`: 4
|
| 482 |
- `num_train_epochs`: 1
|
| 483 |
- `warmup_ratio`: 0.1
|
| 484 |
- `seed`: 2025
|
|
@@ -499,11 +498,11 @@ You can finetune this model on your own dataset.
|
|
| 499 |
- `do_predict`: False
|
| 500 |
- `eval_strategy`: epoch
|
| 501 |
- `prediction_loss_only`: True
|
| 502 |
-
- `per_device_train_batch_size`:
|
| 503 |
-
- `per_device_eval_batch_size`:
|
| 504 |
- `per_gpu_train_batch_size`: None
|
| 505 |
- `per_gpu_eval_batch_size`: None
|
| 506 |
-
- `gradient_accumulation_steps`:
|
| 507 |
- `eval_accumulation_steps`: None
|
| 508 |
- `torch_empty_cache_steps`: None
|
| 509 |
- `learning_rate`: 5e-05
|
|
@@ -619,9 +618,8 @@ You can finetune this model on your own dataset.
|
|
| 619 |
### Training Logs
|
| 620 |
| Epoch | Step | Validation Loss | cosine_ndcg@10 |
|
| 621 |
|:-------:|:------:|:---------------:|:--------------:|
|
| 622 |
-
| 0 | 0 | 0.
|
| 623 |
-
| **1.0** | **25** | **0.
|
| 624 |
-
| -1 | -1 | - | 0.9839 |
|
| 625 |
|
| 626 |
* The bold row denotes the saved checkpoint.
|
| 627 |
|
|
|
|
| 230 |
type: unknown
|
| 231 |
metrics:
|
| 232 |
- type: cosine_accuracy@1
|
| 233 |
+
value: 0.97
|
| 234 |
name: Cosine Accuracy@1
|
| 235 |
- type: cosine_accuracy@5
|
| 236 |
value: 1.0
|
|
|
|
| 239 |
value: 1.0
|
| 240 |
name: Cosine Accuracy@10
|
| 241 |
- type: cosine_precision@1
|
| 242 |
+
value: 0.97
|
| 243 |
name: Cosine Precision@1
|
| 244 |
- type: cosine_precision@3
|
| 245 |
value: 0.3333333333333334
|
|
|
|
| 251 |
value: 0.09999999999999998
|
| 252 |
name: Cosine Precision@10
|
| 253 |
- type: cosine_recall@1
|
| 254 |
+
value: 0.97
|
| 255 |
name: Cosine Recall@1
|
| 256 |
- type: cosine_recall@3
|
| 257 |
value: 1.0
|
|
|
|
| 263 |
value: 1.0
|
| 264 |
name: Cosine Recall@10
|
| 265 |
- type: cosine_ndcg@1
|
| 266 |
+
value: 0.97
|
| 267 |
name: Cosine Ndcg@1
|
| 268 |
- type: cosine_ndcg@5
|
| 269 |
+
value: 0.9889278926071438
|
| 270 |
name: Cosine Ndcg@5
|
| 271 |
- type: cosine_ndcg@10
|
| 272 |
+
value: 0.9889278926071438
|
| 273 |
name: Cosine Ndcg@10
|
| 274 |
- type: cosine_mrr@1
|
| 275 |
+
value: 0.97
|
| 276 |
name: Cosine Mrr@1
|
| 277 |
- type: cosine_mrr@5
|
| 278 |
+
value: 0.985
|
| 279 |
name: Cosine Mrr@5
|
| 280 |
- type: cosine_mrr@10
|
| 281 |
+
value: 0.985
|
| 282 |
name: Cosine Mrr@10
|
| 283 |
- type: cosine_map@100
|
| 284 |
+
value: 0.985
|
| 285 |
name: Cosine Map@100
|
| 286 |
---
|
| 287 |
|
|
|
|
| 350 |
# Get the similarity scores for the embeddings
|
| 351 |
similarities = model.similarity(query_embeddings, document_embeddings)
|
| 352 |
print(similarities)
|
| 353 |
+
# tensor([[ 0.8193, -0.1132, 0.0397]])
|
| 354 |
```
|
| 355 |
|
| 356 |
<!--
|
|
|
|
| 387 |
|
| 388 |
| Metric | Value |
|
| 389 |
|:--------------------|:-----------|
|
| 390 |
+
| cosine_accuracy@1 | 0.97 |
|
| 391 |
| cosine_accuracy@5 | 1.0 |
|
| 392 |
| cosine_accuracy@10 | 1.0 |
|
| 393 |
+
| cosine_precision@1 | 0.97 |
|
| 394 |
| cosine_precision@3 | 0.3333 |
|
| 395 |
| cosine_precision@5 | 0.2 |
|
| 396 |
| cosine_precision@10 | 0.1 |
|
| 397 |
+
| cosine_recall@1 | 0.97 |
|
| 398 |
| cosine_recall@3 | 1.0 |
|
| 399 |
| cosine_recall@5 | 1.0 |
|
| 400 |
| cosine_recall@10 | 1.0 |
|
| 401 |
+
| cosine_ndcg@1 | 0.97 |
|
| 402 |
+
| cosine_ndcg@5 | 0.9889 |
|
| 403 |
+
| **cosine_ndcg@10** | **0.9889** |
|
| 404 |
+
| cosine_mrr@1 | 0.97 |
|
| 405 |
+
| cosine_mrr@5 | 0.985 |
|
| 406 |
+
| cosine_mrr@10 | 0.985 |
|
| 407 |
+
| cosine_map@100 | 0.985 |
|
| 408 |
|
| 409 |
<!--
|
| 410 |
## Bias, Risks and Limitations
|
|
|
|
| 476 |
#### Non-Default Hyperparameters
|
| 477 |
|
| 478 |
- `eval_strategy`: epoch
|
| 479 |
+
- `per_device_train_batch_size`: 16
|
| 480 |
+
- `per_device_eval_batch_size`: 16
|
|
|
|
| 481 |
- `num_train_epochs`: 1
|
| 482 |
- `warmup_ratio`: 0.1
|
| 483 |
- `seed`: 2025
|
|
|
|
| 498 |
- `do_predict`: False
|
| 499 |
- `eval_strategy`: epoch
|
| 500 |
- `prediction_loss_only`: True
|
| 501 |
+
- `per_device_train_batch_size`: 16
|
| 502 |
+
- `per_device_eval_batch_size`: 16
|
| 503 |
- `per_gpu_train_batch_size`: None
|
| 504 |
- `per_gpu_eval_batch_size`: None
|
| 505 |
+
- `gradient_accumulation_steps`: 1
|
| 506 |
- `eval_accumulation_steps`: None
|
| 507 |
- `torch_empty_cache_steps`: None
|
| 508 |
- `learning_rate`: 5e-05
|
|
|
|
| 618 |
### Training Logs
|
| 619 |
| Epoch | Step | Validation Loss | cosine_ndcg@10 |
|
| 620 |
|:-------:|:------:|:---------------:|:--------------:|
|
| 621 |
+
| 0 | 0 | 0.0191 | 0.9926 |
|
| 622 |
+
| **1.0** | **25** | **0.0061** | **0.9889** |
|
|
|
|
| 623 |
|
| 624 |
* The bold row denotes the saved checkpoint.
|
| 625 |
|