JianZhangAI commited on
Commit
afd3754
·
verified ·
1 Parent(s): 1e38cca

Delete 0318-afford-three-alternate-pretrain

Browse files
Files changed (42) hide show
  1. 0318-afford-three-alternate-pretrain/checkpoint-22000/README.md +0 -9
  2. 0318-afford-three-alternate-pretrain/checkpoint-22000/config.json +0 -49
  3. 0318-afford-three-alternate-pretrain/checkpoint-22000/ema/model.safetensors +0 -3
  4. 0318-afford-three-alternate-pretrain/checkpoint-22000/latest +0 -1
  5. 0318-afford-three-alternate-pretrain/checkpoint-22000/pytorch_model.bin +0 -3
  6. 0318-afford-three-alternate-pretrain/checkpoint-22000/pytorch_model/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +0 -3
  7. 0318-afford-three-alternate-pretrain/checkpoint-22000/pytorch_model/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +0 -3
  8. 0318-afford-three-alternate-pretrain/checkpoint-22000/pytorch_model/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +0 -3
  9. 0318-afford-three-alternate-pretrain/checkpoint-22000/pytorch_model/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +0 -3
  10. 0318-afford-three-alternate-pretrain/checkpoint-22000/pytorch_model/mp_rank_00_model_states.pt +0 -3
  11. 0318-afford-three-alternate-pretrain/checkpoint-22000/random_states_0.pkl +0 -3
  12. 0318-afford-three-alternate-pretrain/checkpoint-22000/random_states_1.pkl +0 -3
  13. 0318-afford-three-alternate-pretrain/checkpoint-22000/random_states_2.pkl +0 -3
  14. 0318-afford-three-alternate-pretrain/checkpoint-22000/random_states_3.pkl +0 -3
  15. 0318-afford-three-alternate-pretrain/checkpoint-22000/scheduler.bin +0 -3
  16. 0318-afford-three-alternate-pretrain/checkpoint-22000/zero_to_fp32.py +0 -760
  17. 0318-afford-three-alternate-pretrain/checkpoint-28000/0318-afford-three-alternate-pretrain_front-28000.zip +0 -3
  18. 0318-afford-three-alternate-pretrain/checkpoint-28000/README.md +0 -9
  19. 0318-afford-three-alternate-pretrain/checkpoint-28000/config.json +0 -49
  20. 0318-afford-three-alternate-pretrain/checkpoint-28000/ema/model.safetensors +0 -3
  21. 0318-afford-three-alternate-pretrain/checkpoint-28000/latest +0 -1
  22. 0318-afford-three-alternate-pretrain/checkpoint-28000/pytorch_model.bin +0 -3
  23. 0318-afford-three-alternate-pretrain/checkpoint-28000/pytorch_model/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +0 -3
  24. 0318-afford-three-alternate-pretrain/checkpoint-28000/pytorch_model/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +0 -3
  25. 0318-afford-three-alternate-pretrain/checkpoint-28000/pytorch_model/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +0 -3
  26. 0318-afford-three-alternate-pretrain/checkpoint-28000/pytorch_model/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +0 -3
  27. 0318-afford-three-alternate-pretrain/checkpoint-28000/pytorch_model/mp_rank_00_model_states.pt +0 -3
  28. 0318-afford-three-alternate-pretrain/checkpoint-28000/random_states_0.pkl +0 -3
  29. 0318-afford-three-alternate-pretrain/checkpoint-28000/random_states_1.pkl +0 -3
  30. 0318-afford-three-alternate-pretrain/checkpoint-28000/random_states_2.pkl +0 -3
  31. 0318-afford-three-alternate-pretrain/checkpoint-28000/random_states_3.pkl +0 -3
  32. 0318-afford-three-alternate-pretrain/checkpoint-28000/scheduler.bin +0 -3
  33. 0318-afford-three-alternate-pretrain/checkpoint-28000/zero_to_fp32.py +0 -760
  34. 0318-afford-three-alternate-pretrain/logs/roboticDiffusionTransformer/1742317327.22402/events.out.tfevents.1742317327.computer4.1683012.1 +0 -3
  35. 0318-afford-three-alternate-pretrain/logs/roboticDiffusionTransformer/1742317327.2268047/hparams.yml +0 -48
  36. 0318-afford-three-alternate-pretrain/logs/roboticDiffusionTransformer/1742317473.216907/events.out.tfevents.1742317473.computer4.1702977.1 +0 -3
  37. 0318-afford-three-alternate-pretrain/logs/roboticDiffusionTransformer/1742317473.2195845/hparams.yml +0 -48
  38. 0318-afford-three-alternate-pretrain/logs/roboticDiffusionTransformer/1742317614.8297184/events.out.tfevents.1742317614.computer4.1722935.1 +0 -3
  39. 0318-afford-three-alternate-pretrain/logs/roboticDiffusionTransformer/1742317614.8324273/hparams.yml +0 -48
  40. 0318-afford-three-alternate-pretrain/logs/roboticDiffusionTransformer/events.out.tfevents.1742317327.computer4.1683012.0 +0 -3
  41. 0318-afford-three-alternate-pretrain/logs/roboticDiffusionTransformer/events.out.tfevents.1742317473.computer4.1702977.0 +0 -3
  42. 0318-afford-three-alternate-pretrain/logs/roboticDiffusionTransformer/events.out.tfevents.1742317614.computer4.1722935.0 +0 -3
0318-afford-three-alternate-pretrain/checkpoint-22000/README.md DELETED
@@ -1,9 +0,0 @@
1
- ---
2
- tags:
3
- - model_hub_mixin
4
- - pytorch_model_hub_mixin
5
- ---
6
-
7
- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
8
- - Library: https://huggingface.co/robotics-diffusion-transformer/rdt-1b
9
- - Docs: [More Information Needed]
 
 
 
 
 
 
 
 
 
 
0318-afford-three-alternate-pretrain/checkpoint-22000/config.json DELETED
@@ -1,49 +0,0 @@
1
- {
2
- "action_dim": 2,
3
- "ema": {
4
- "inv_gamma": 1.0,
5
- "max_value": 0.9999,
6
- "min_value": 0.0,
7
- "power": 0.75,
8
- "update_after_step": 0
9
- },
10
- "img_adaptor": "mlp2x_gelu",
11
- "img_cond_len": 1458,
12
- "img_pos_embed_config": [
13
- [
14
- "image",
15
- [
16
- 2,
17
- 1,
18
- -729
19
- ]
20
- ]
21
- ],
22
- "img_token_dim": 1152,
23
- "lang_adaptor": "mlp2x_gelu",
24
- "lang_pos_embed_config": [
25
- [
26
- "lang",
27
- -1024
28
- ]
29
- ],
30
- "lang_token_dim": 3584,
31
- "max_lang_cond_len": 1024,
32
- "noise_scheduler": {
33
- "beta_schedule": "squaredcos_cap_v2",
34
- "clip_sample": false,
35
- "num_inference_timesteps": 5,
36
- "num_train_timesteps": 1000,
37
- "prediction_type": "sample",
38
- "type": "ddpm"
39
- },
40
- "pred_horizon": 5,
41
- "rdt": {
42
- "cond_pos_embed_type": "multimodal",
43
- "depth": 28,
44
- "hidden_size": 2048,
45
- "num_heads": 32
46
- },
47
- "state_adaptor": "mlp3x_gelu",
48
- "state_token_dim": 2
49
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0318-afford-three-alternate-pretrain/checkpoint-22000/ema/model.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:a92c19d22d899ad3f67ba38c20cb71ea67c55e66f104eaabd31b4796666ff68b
3
- size 2431411964
 
 
 
 
0318-afford-three-alternate-pretrain/checkpoint-22000/latest DELETED
@@ -1 +0,0 @@
1
- pytorch_model
 
 
0318-afford-three-alternate-pretrain/checkpoint-22000/pytorch_model.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:c77fea3a3bd0128237fcf99490a14511c6c426f45d9f47d6978d1c1f605d407f
3
- size 2431461754
 
 
 
 
0318-afford-three-alternate-pretrain/checkpoint-22000/pytorch_model/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:6fe9312d3c864cf6996b559524fdaf7ac2fda48569a012cefab8e2a28c069abf
3
- size 3647034352
 
 
 
 
0318-afford-three-alternate-pretrain/checkpoint-22000/pytorch_model/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:24e616cf97057a7cf393198c18a0e3a891369e4e6fa80319b387695c4898dc3e
3
- size 3647033904
 
 
 
 
0318-afford-three-alternate-pretrain/checkpoint-22000/pytorch_model/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:ebbd245b711a9c0d16bffeb7fe73afa1fd3262fed8ed0eb8414102a14989f8d4
3
- size 3647034416
 
 
 
 
0318-afford-three-alternate-pretrain/checkpoint-22000/pytorch_model/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:b999834e33438ace3ca554548f44d277cc08fd7b69c5e7b8083414edf9fc41c4
3
- size 3647034608
 
 
 
 
0318-afford-three-alternate-pretrain/checkpoint-22000/pytorch_model/mp_rank_00_model_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:093eadf6d45a8b0ccb4e5edab533ef20ba4829cc1d5b039c12975ef501cedd80
3
- size 2431505004
 
 
 
 
0318-afford-three-alternate-pretrain/checkpoint-22000/random_states_0.pkl DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:f2c511300a555baf94d2f3cf48a7c914c7ca587a8a7d7ba63f5b44ccea2d5a10
3
- size 15060
 
 
 
 
0318-afford-three-alternate-pretrain/checkpoint-22000/random_states_1.pkl DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:ad02d8c5914c1d66f8f59926fb4092b139cb53562c00679ff2d682785fa47b30
3
- size 15060
 
 
 
 
0318-afford-three-alternate-pretrain/checkpoint-22000/random_states_2.pkl DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:52492d3ca186158c58e41e12b6f792742314485f1f5885fd356b3da0fbc8fb48
3
- size 15060
 
 
 
 
0318-afford-three-alternate-pretrain/checkpoint-22000/random_states_3.pkl DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:faf860724e5c93be8b3aef5e3b17d458928cd1ddd9a8be1299ee7685642885bd
3
- size 15060
 
 
 
 
0318-afford-three-alternate-pretrain/checkpoint-22000/scheduler.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:4c792e2e94fc4a458c44e3830539c70dcf76432deb2be918ca623ba3f5520f21
3
- size 1000
 
 
 
 
0318-afford-three-alternate-pretrain/checkpoint-22000/zero_to_fp32.py DELETED
@@ -1,760 +0,0 @@
1
- #!/usr/bin/env python
2
-
3
- # Copyright (c) Microsoft Corporation.
4
- # SPDX-License-Identifier: Apache-2.0
5
-
6
- # DeepSpeed Team
7
-
8
- # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
- # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
- # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
- # application.
12
- #
13
- # example:
14
- # python zero_to_fp32.py . output_dir/
15
- # or
16
- # python zero_to_fp32.py . output_dir/ --safe_serialization
17
-
18
- import argparse
19
- import torch
20
- import glob
21
- import math
22
- import os
23
- import re
24
- import gc
25
- import json
26
- import numpy as np
27
- from tqdm import tqdm
28
- from collections import OrderedDict
29
- from dataclasses import dataclass
30
-
31
- # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
- # DeepSpeed data structures it has to be available in the current python environment.
33
- from deepspeed.utils import logger
34
- from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
- FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
- FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
-
38
-
39
- @dataclass
40
- class zero_model_state:
41
- buffers: dict()
42
- param_shapes: dict()
43
- shared_params: list
44
- ds_version: int
45
- frozen_param_shapes: dict()
46
- frozen_param_fragments: dict()
47
-
48
-
49
- debug = 0
50
-
51
- # load to cpu
52
- device = torch.device('cpu')
53
-
54
-
55
- def atoi(text):
56
- return int(text) if text.isdigit() else text
57
-
58
-
59
- def natural_keys(text):
60
- '''
61
- alist.sort(key=natural_keys) sorts in human order
62
- http://nedbatchelder.com/blog/200712/human_sorting.html
63
- (See Toothy's implementation in the comments)
64
- '''
65
- return [atoi(c) for c in re.split(r'(\d+)', text)]
66
-
67
-
68
- def get_model_state_file(checkpoint_dir, zero_stage):
69
- if not os.path.isdir(checkpoint_dir):
70
- raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
-
72
- # there should be only one file
73
- if zero_stage <= 2:
74
- file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
- elif zero_stage == 3:
76
- file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
-
78
- if not os.path.exists(file):
79
- raise FileNotFoundError(f"can't find model states file at '{file}'")
80
-
81
- return file
82
-
83
-
84
- def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
- # XXX: need to test that this simple glob rule works for multi-node setup too
86
- ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
-
88
- if len(ckpt_files) == 0:
89
- raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
-
91
- return ckpt_files
92
-
93
-
94
- def get_optim_files(checkpoint_dir):
95
- return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
-
97
-
98
- def get_model_state_files(checkpoint_dir):
99
- return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
-
101
-
102
- def parse_model_states(files):
103
- zero_model_states = []
104
- for file in files:
105
- state_dict = torch.load(file, map_location=device, weights_only=False)
106
-
107
- if BUFFER_NAMES not in state_dict:
108
- raise ValueError(f"{file} is not a model state checkpoint")
109
- buffer_names = state_dict[BUFFER_NAMES]
110
- if debug:
111
- print("Found buffers:", buffer_names)
112
-
113
- # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
- buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
- param_shapes = state_dict[PARAM_SHAPES]
116
-
117
- # collect parameters that are included in param_shapes
118
- param_names = []
119
- for s in param_shapes:
120
- for name in s.keys():
121
- param_names.append(name)
122
-
123
- # update with frozen parameters
124
- frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
- if frozen_param_shapes is not None:
126
- if debug:
127
- print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
- param_names += list(frozen_param_shapes.keys())
129
-
130
- # handle shared params
131
- shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
-
133
- ds_version = state_dict.get(DS_VERSION, None)
134
-
135
- frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
-
137
- z_model_state = zero_model_state(buffers=buffers,
138
- param_shapes=param_shapes,
139
- shared_params=shared_params,
140
- ds_version=ds_version,
141
- frozen_param_shapes=frozen_param_shapes,
142
- frozen_param_fragments=frozen_param_fragments)
143
- zero_model_states.append(z_model_state)
144
-
145
- return zero_model_states
146
-
147
-
148
- def parse_optim_states(files, ds_checkpoint_dir):
149
- total_files = len(files)
150
- state_dicts = []
151
- for f in tqdm(files, desc='Loading checkpoint shards'):
152
- state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
- # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
- # and also handle the case where it was already removed by another helper script
155
- state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
- state_dicts.append(state_dict)
157
-
158
- if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
- raise ValueError(f"{files[0]} is not a zero checkpoint")
160
- zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
- world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
-
163
- # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
- # parameters can be different from data parallelism for non-expert parameters. So we can just
165
- # use the max of the partition_count to get the dp world_size.
166
-
167
- if type(world_size) is list:
168
- world_size = max(world_size)
169
-
170
- if world_size != total_files:
171
- raise ValueError(
172
- f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
- "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
- )
175
-
176
- # the groups are named differently in each stage
177
- if zero_stage <= 2:
178
- fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
- elif zero_stage == 3:
180
- fp32_groups_key = FP32_FLAT_GROUPS
181
- else:
182
- raise ValueError(f"unknown zero stage {zero_stage}")
183
-
184
- fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
- return zero_stage, world_size, fp32_flat_groups
186
-
187
-
188
- def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
- """
190
- Returns fp32 state_dict reconstructed from ds checkpoint
191
-
192
- Args:
193
- - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
-
195
- """
196
- print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
-
198
- optim_files = get_optim_files(ds_checkpoint_dir)
199
- zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
- print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
-
202
- model_files = get_model_state_files(ds_checkpoint_dir)
203
-
204
- zero_model_states = parse_model_states(model_files)
205
- print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
-
207
- if zero_stage <= 2:
208
- return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
- exclude_frozen_parameters)
210
- elif zero_stage == 3:
211
- return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
- exclude_frozen_parameters)
213
-
214
-
215
- def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
- if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
- return
218
-
219
- frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
- frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
-
222
- if debug:
223
- num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
- print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
-
226
- wanted_params = len(frozen_param_shapes)
227
- wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
- avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
- print(f'Frozen params: Have {avail_numel} numels to process.')
230
- print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
-
232
- total_params = 0
233
- total_numel = 0
234
- for name, shape in frozen_param_shapes.items():
235
- total_params += 1
236
- unpartitioned_numel = shape.numel()
237
- total_numel += unpartitioned_numel
238
-
239
- state_dict[name] = frozen_param_fragments[name]
240
-
241
- if debug:
242
- print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
-
244
- print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
-
246
-
247
- def _has_callable(obj, fn):
248
- attr = getattr(obj, fn, None)
249
- return callable(attr)
250
-
251
-
252
- def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
- param_shapes = zero_model_states[0].param_shapes
254
-
255
- # Reconstruction protocol:
256
- #
257
- # XXX: document this
258
-
259
- if debug:
260
- for i in range(world_size):
261
- for j in range(len(fp32_flat_groups[0])):
262
- print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
-
264
- # XXX: memory usage doubles here (zero2)
265
- num_param_groups = len(fp32_flat_groups[0])
266
- merged_single_partition_of_fp32_groups = []
267
- for i in range(num_param_groups):
268
- merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
- full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
- merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
- avail_numel = sum(
272
- [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
-
274
- if debug:
275
- wanted_params = sum([len(shapes) for shapes in param_shapes])
276
- wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
- # not asserting if there is a mismatch due to possible padding
278
- print(f"Have {avail_numel} numels to process.")
279
- print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
-
281
- # params
282
- # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
- # out-of-core computing solution
284
- total_numel = 0
285
- total_params = 0
286
- for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
- offset = 0
288
- avail_numel = full_single_fp32_vector.numel()
289
- for name, shape in shapes.items():
290
-
291
- unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
- total_numel += unpartitioned_numel
293
- total_params += 1
294
-
295
- if debug:
296
- print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
- state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
- offset += unpartitioned_numel
299
-
300
- # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
- # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
- # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
- # live optimizer object, so we are checking that the numbers are within the right range
304
- align_to = 2 * world_size
305
-
306
- def zero2_align(x):
307
- return align_to * math.ceil(x / align_to)
308
-
309
- if debug:
310
- print(f"original offset={offset}, avail_numel={avail_numel}")
311
-
312
- offset = zero2_align(offset)
313
- avail_numel = zero2_align(avail_numel)
314
-
315
- if debug:
316
- print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
-
318
- # Sanity check
319
- if offset != avail_numel:
320
- raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
-
322
- print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
-
324
-
325
- def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
- exclude_frozen_parameters):
327
- state_dict = OrderedDict()
328
-
329
- # buffers
330
- buffers = zero_model_states[0].buffers
331
- state_dict.update(buffers)
332
- if debug:
333
- print(f"added {len(buffers)} buffers")
334
-
335
- if not exclude_frozen_parameters:
336
- _zero2_merge_frozen_params(state_dict, zero_model_states)
337
-
338
- _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
-
340
- # recover shared parameters
341
- for pair in zero_model_states[0].shared_params:
342
- if pair[1] in state_dict:
343
- state_dict[pair[0]] = state_dict[pair[1]]
344
-
345
- return state_dict
346
-
347
-
348
- def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
- remainder = unpartitioned_numel % world_size
350
- padding_numel = (world_size - remainder) if remainder else 0
351
- partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
- return partitioned_numel, padding_numel
353
-
354
-
355
- def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
- if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
- return
358
-
359
- if debug:
360
- for i in range(world_size):
361
- num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
- print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
-
364
- frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
- wanted_params = len(frozen_param_shapes)
366
- wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
- avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
- print(f'Frozen params: Have {avail_numel} numels to process.')
369
- print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
-
371
- total_params = 0
372
- total_numel = 0
373
- for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
- total_params += 1
375
- unpartitioned_numel = shape.numel()
376
- total_numel += unpartitioned_numel
377
-
378
- param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
- state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
-
381
- partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
-
383
- if debug:
384
- print(
385
- f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
- )
387
-
388
- print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
-
390
-
391
- class GatheredTensor:
392
- """
393
- A pseudo tensor that collects partitioned weights.
394
- It is more memory efficient when there are multiple groups.
395
- """
396
-
397
- def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
- self.flat_groups = flat_groups
399
- self.flat_groups_offset = flat_groups_offset
400
- self.offset = offset
401
- self.partitioned_numel = partitioned_numel
402
- self.shape = shape
403
- self.dtype = self.flat_groups[0][0].dtype
404
-
405
- def contiguous(self):
406
- """
407
- Merge partitioned weights from flat_groups into a single tensor.
408
- """
409
- end_idx = self.offset + self.partitioned_numel
410
- world_size = len(self.flat_groups)
411
- pad_flat_param_chunks = []
412
-
413
- for rank_i in range(world_size):
414
- # for each rank, we need to collect weights from related group/groups
415
- flat_groups_at_rank_i = self.flat_groups[rank_i]
416
- start_group_id = None
417
- end_group_id = None
418
- for group_id in range(len(self.flat_groups_offset)):
419
- if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
- start_group_id = group_id
421
- if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
- end_group_id = group_id
423
- break
424
- # collect weights from related group/groups
425
- for group_id in range(start_group_id, end_group_id + 1):
426
- flat_tensor = flat_groups_at_rank_i[group_id]
427
- start_offset = self.offset - self.flat_groups_offset[group_id]
428
- end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
- pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
-
431
- # collect weights from all ranks
432
- pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
- param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
- return param
435
-
436
-
437
- def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
- param_shapes = zero_model_states[0].param_shapes
439
- avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
-
441
- # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
- # param, re-consolidating each param, while dealing with padding if any
443
-
444
- # merge list of dicts, preserving order
445
- param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
-
447
- if debug:
448
- for i in range(world_size):
449
- print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
-
451
- wanted_params = len(param_shapes)
452
- wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
- # not asserting if there is a mismatch due to possible padding
454
- avail_numel = fp32_flat_groups[0].numel() * world_size
455
- print(f"Trainable params: Have {avail_numel} numels to process.")
456
- print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
-
458
- # params
459
- # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
- # out-of-core computing solution
461
- offset = 0
462
- total_numel = 0
463
- total_params = 0
464
- flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
- for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
- unpartitioned_numel = shape.numel()
467
- total_numel += unpartitioned_numel
468
- total_params += 1
469
- partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
-
471
- if debug:
472
- print(
473
- f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
- )
475
-
476
- # memory efficient tensor
477
- tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
- state_dict[name] = tensor
479
- offset += partitioned_numel
480
-
481
- offset *= world_size
482
-
483
- # Sanity check
484
- if offset != avail_numel:
485
- raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
-
487
- print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
-
489
-
490
- def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
- exclude_frozen_parameters):
492
- state_dict = OrderedDict()
493
-
494
- # buffers
495
- buffers = zero_model_states[0].buffers
496
- state_dict.update(buffers)
497
- if debug:
498
- print(f"added {len(buffers)} buffers")
499
-
500
- if not exclude_frozen_parameters:
501
- _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
-
503
- _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
-
505
- # recover shared parameters
506
- for pair in zero_model_states[0].shared_params:
507
- if pair[1] in state_dict:
508
- state_dict[pair[0]] = state_dict[pair[1]]
509
-
510
- return state_dict
511
-
512
-
513
- def to_torch_tensor(state_dict, return_empty_tensor=False):
514
- """
515
- Convert state_dict of GatheredTensor to torch tensor
516
- """
517
- torch_state_dict = {}
518
- converted_tensors = {}
519
- for name, tensor in state_dict.items():
520
- tensor_id = id(tensor)
521
- if tensor_id in converted_tensors: # shared tensors
522
- shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
- torch_state_dict[name] = shared_tensor
524
- else:
525
- converted_tensors[tensor_id] = name
526
- if return_empty_tensor:
527
- torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
- else:
529
- torch_state_dict[name] = tensor.contiguous()
530
- return torch_state_dict
531
-
532
-
533
- def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
- tag=None,
535
- exclude_frozen_parameters=False,
536
- lazy_mode=False):
537
- """
538
- Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
- ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
- via a model hub.
541
-
542
- Args:
543
- - ``checkpoint_dir``: path to the desired checkpoint folder
544
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
- - ``exclude_frozen_parameters``: exclude frozen parameters
546
- - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
- Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
-
549
- Returns:
550
- - pytorch ``state_dict``
551
-
552
- A typical usage might be ::
553
-
554
- from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
- # do the training and checkpoint saving
556
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
- model = model.cpu() # move to cpu
558
- model.load_state_dict(state_dict)
559
- # submit to model hub or save the model to share with others
560
-
561
- In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
- application. i.e. you will need to re-initialize the deepspeed engine, since
563
- ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
-
565
- If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
-
567
- Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
- You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
- the checkpoint. Or you can load state_dict in lazy mode ::
570
-
571
- from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
- for name, lazy_tensor in state_dict.item():
574
- tensor = lazy_tensor.contiguous() # to cpu
575
- print(name, tensor)
576
- # del tensor to release memory if it no longer in use
577
- """
578
- if tag is None:
579
- latest_path = os.path.join(checkpoint_dir, 'latest')
580
- if os.path.isfile(latest_path):
581
- with open(latest_path, 'r') as fd:
582
- tag = fd.read().strip()
583
- else:
584
- raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
-
586
- ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
-
588
- if not os.path.isdir(ds_checkpoint_dir):
589
- raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
-
591
- state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
- if lazy_mode:
593
- return state_dict
594
- else:
595
- return to_torch_tensor(state_dict)
596
-
597
-
598
- def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
- output_dir,
600
- max_shard_size="5GB",
601
- safe_serialization=False,
602
- tag=None,
603
- exclude_frozen_parameters=False):
604
- """
605
- Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
- loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
-
608
- Args:
609
- - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
- - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
- - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
- - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
- - ``exclude_frozen_parameters``: exclude frozen parameters
615
- """
616
-
617
- # Dependency pre-check
618
- if safe_serialization:
619
- try:
620
- from safetensors.torch import save_file
621
- except ImportError:
622
- print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
- raise
624
- if max_shard_size is not None:
625
- try:
626
- from huggingface_hub import split_torch_state_dict_into_shards
627
- except ImportError:
628
- print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
- raise
630
-
631
- # Convert zero checkpoint to state_dict
632
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
- tag,
634
- exclude_frozen_parameters,
635
- lazy_mode=True)
636
-
637
- # Shard the model if it is too big.
638
- weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
- if max_shard_size is not None:
640
- filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
- # an memory-efficient approach for sharding
642
- empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
- state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
- filename_pattern=filename_pattern,
645
- max_shard_size=max_shard_size)
646
- else:
647
- from collections import namedtuple
648
- StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
- state_dict_split = StateDictSplit(is_sharded=False,
650
- filename_to_tensors={weights_name: list(state_dict.keys())})
651
-
652
- # Save the model by shard
653
- os.makedirs(output_dir, exist_ok=True)
654
- filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
- for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
- shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
- shard_state_dict = to_torch_tensor(shard_state_dict)
658
- output_path = os.path.join(output_dir, shard_file)
659
- if safe_serialization:
660
- save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
- else:
662
- torch.save(shard_state_dict, output_path)
663
- # release the memory of current shard
664
- for tensor_name in list(shard_state_dict.keys()):
665
- del state_dict[tensor_name]
666
- del shard_state_dict[tensor_name]
667
- del shard_state_dict
668
- gc.collect()
669
-
670
- # Save index if sharded
671
- if state_dict_split.is_sharded:
672
- index = {
673
- "metadata": state_dict_split.metadata,
674
- "weight_map": state_dict_split.tensor_to_filename,
675
- }
676
- save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
- save_index_file = os.path.join(output_dir, save_index_file)
678
- with open(save_index_file, "w", encoding="utf-8") as f:
679
- content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
- f.write(content)
681
-
682
-
683
- def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
- """
685
- 1. Put the provided model to cpu
686
- 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
- 3. Load it into the provided model
688
-
689
- Args:
690
- - ``model``: the model object to update
691
- - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
-
694
- Returns:
695
- - ``model`: modified model
696
-
697
- Make sure you have plenty of CPU memory available before you call this function. If you don't
698
- have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
- conveniently placed for you in the checkpoint folder.
700
-
701
- A typical usage might be ::
702
-
703
- from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
- model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
- # submit to model hub or save the model to share with others
706
-
707
- Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
- of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
- ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
-
711
- """
712
- logger.info(f"Extracting fp32 weights")
713
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
-
715
- logger.info(f"Overwriting model with fp32 weights")
716
- model = model.cpu()
717
- model.load_state_dict(state_dict, strict=False)
718
-
719
- return model
720
-
721
-
722
- if __name__ == "__main__":
723
- parser = argparse.ArgumentParser()
724
- parser.add_argument("checkpoint_dir",
725
- type=str,
726
- help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
- parser.add_argument("output_dir",
728
- type=str,
729
- help="directory to the pytorch fp32 state_dict output files"
730
- "(e.g. path/checkpoint-12-output/)")
731
- parser.add_argument(
732
- "--max_shard_size",
733
- type=str,
734
- default="5GB",
735
- help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
- "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
- "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
- "without CPU OOM issues.")
739
- parser.add_argument(
740
- "--safe_serialization",
741
- default=False,
742
- action='store_true',
743
- help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
- parser.add_argument("-t",
745
- "--tag",
746
- type=str,
747
- default=None,
748
- help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
- parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
- parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
- args = parser.parse_args()
752
-
753
- debug = args.debug
754
-
755
- convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
- args.output_dir,
757
- max_shard_size=args.max_shard_size,
758
- safe_serialization=args.safe_serialization,
759
- tag=args.tag,
760
- exclude_frozen_parameters=args.exclude_frozen_parameters)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0318-afford-three-alternate-pretrain/checkpoint-28000/0318-afford-three-alternate-pretrain_front-28000.zip DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:a2ddb7ce5a107d0c6d62705a4af79dc877a0c15243e5b6282d33cf7a91094232
3
- size 96158622
 
 
 
 
0318-afford-three-alternate-pretrain/checkpoint-28000/README.md DELETED
@@ -1,9 +0,0 @@
1
- ---
2
- tags:
3
- - model_hub_mixin
4
- - pytorch_model_hub_mixin
5
- ---
6
-
7
- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
8
- - Library: https://huggingface.co/robotics-diffusion-transformer/rdt-1b
9
- - Docs: [More Information Needed]
 
 
 
 
 
 
 
 
 
 
0318-afford-three-alternate-pretrain/checkpoint-28000/config.json DELETED
@@ -1,49 +0,0 @@
1
- {
2
- "action_dim": 2,
3
- "ema": {
4
- "inv_gamma": 1.0,
5
- "max_value": 0.9999,
6
- "min_value": 0.0,
7
- "power": 0.75,
8
- "update_after_step": 0
9
- },
10
- "img_adaptor": "mlp2x_gelu",
11
- "img_cond_len": 1458,
12
- "img_pos_embed_config": [
13
- [
14
- "image",
15
- [
16
- 2,
17
- 1,
18
- -729
19
- ]
20
- ]
21
- ],
22
- "img_token_dim": 1152,
23
- "lang_adaptor": "mlp2x_gelu",
24
- "lang_pos_embed_config": [
25
- [
26
- "lang",
27
- -1024
28
- ]
29
- ],
30
- "lang_token_dim": 3584,
31
- "max_lang_cond_len": 1024,
32
- "noise_scheduler": {
33
- "beta_schedule": "squaredcos_cap_v2",
34
- "clip_sample": false,
35
- "num_inference_timesteps": 5,
36
- "num_train_timesteps": 1000,
37
- "prediction_type": "sample",
38
- "type": "ddpm"
39
- },
40
- "pred_horizon": 5,
41
- "rdt": {
42
- "cond_pos_embed_type": "multimodal",
43
- "depth": 28,
44
- "hidden_size": 2048,
45
- "num_heads": 32
46
- },
47
- "state_adaptor": "mlp3x_gelu",
48
- "state_token_dim": 2
49
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0318-afford-three-alternate-pretrain/checkpoint-28000/ema/model.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:e8eed1a71f10dacfa9b940718358edf5ef0c14ca6342adab79bee43c379b537e
3
- size 2431411964
 
 
 
 
0318-afford-three-alternate-pretrain/checkpoint-28000/latest DELETED
@@ -1 +0,0 @@
1
- pytorch_model
 
 
0318-afford-three-alternate-pretrain/checkpoint-28000/pytorch_model.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:2172d6316db1da0befaf5432ca47f0f023e06f71b77ec81c23de7adb1a2b98fe
3
- size 2431461754
 
 
 
 
0318-afford-three-alternate-pretrain/checkpoint-28000/pytorch_model/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:9c1d9b07840a117cf2cc6074d586055c5768b2f94cd93917adb6d2b2d838ef26
3
- size 3647034352
 
 
 
 
0318-afford-three-alternate-pretrain/checkpoint-28000/pytorch_model/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:b9a9af02b4da6e1386c022f82d4ea50d3bf1073dbe3229538ba3aa4c9d56be3a
3
- size 3647033904
 
 
 
 
0318-afford-three-alternate-pretrain/checkpoint-28000/pytorch_model/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:9a9c7c7b7a9ed725a57a936d065147050223da6a451cb187852876f67014a8ae
3
- size 3647034416
 
 
 
 
0318-afford-three-alternate-pretrain/checkpoint-28000/pytorch_model/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:c4b06636c3253dbc2b46e2cf9fd3332c7308d37e6989d31dc44adf909307d73c
3
- size 3647034608
 
 
 
 
0318-afford-three-alternate-pretrain/checkpoint-28000/pytorch_model/mp_rank_00_model_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:657b090ed2595c9ebcc2c4ca6656b96b726d40b8366cf96a36aaf907410355fc
3
- size 2431505004
 
 
 
 
0318-afford-three-alternate-pretrain/checkpoint-28000/random_states_0.pkl DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:927400457270b8f2cc832986b6ab24d911ec380ebbff963631597186637c23b7
3
- size 15060
 
 
 
 
0318-afford-three-alternate-pretrain/checkpoint-28000/random_states_1.pkl DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:358e06495af79e1a3e590a11bfa7cf32789e61ad1b9f127ad610a9117f4f6529
3
- size 15060
 
 
 
 
0318-afford-three-alternate-pretrain/checkpoint-28000/random_states_2.pkl DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:a0d108fe621eac7fcc5f64bc594f340ba86de55ea63ce8938da1ecfb90666add
3
- size 15060
 
 
 
 
0318-afford-three-alternate-pretrain/checkpoint-28000/random_states_3.pkl DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:62493d29208b98ca9cc4f2b5d55ea334548ee7b116ad02181076750210a71f1e
3
- size 15060
 
 
 
 
0318-afford-three-alternate-pretrain/checkpoint-28000/scheduler.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:265bb2b069563558e9dbbe17d2a73a4387e69045ed1f3f4aa49e3f79ac08a8c0
3
- size 1000
 
 
 
 
0318-afford-three-alternate-pretrain/checkpoint-28000/zero_to_fp32.py DELETED
@@ -1,760 +0,0 @@
1
- #!/usr/bin/env python
2
-
3
- # Copyright (c) Microsoft Corporation.
4
- # SPDX-License-Identifier: Apache-2.0
5
-
6
- # DeepSpeed Team
7
-
8
- # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
- # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
- # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
- # application.
12
- #
13
- # example:
14
- # python zero_to_fp32.py . output_dir/
15
- # or
16
- # python zero_to_fp32.py . output_dir/ --safe_serialization
17
-
18
- import argparse
19
- import torch
20
- import glob
21
- import math
22
- import os
23
- import re
24
- import gc
25
- import json
26
- import numpy as np
27
- from tqdm import tqdm
28
- from collections import OrderedDict
29
- from dataclasses import dataclass
30
-
31
- # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
- # DeepSpeed data structures it has to be available in the current python environment.
33
- from deepspeed.utils import logger
34
- from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
- FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
- FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
-
38
-
39
- @dataclass
40
- class zero_model_state:
41
- buffers: dict()
42
- param_shapes: dict()
43
- shared_params: list
44
- ds_version: int
45
- frozen_param_shapes: dict()
46
- frozen_param_fragments: dict()
47
-
48
-
49
- debug = 0
50
-
51
- # load to cpu
52
- device = torch.device('cpu')
53
-
54
-
55
- def atoi(text):
56
- return int(text) if text.isdigit() else text
57
-
58
-
59
- def natural_keys(text):
60
- '''
61
- alist.sort(key=natural_keys) sorts in human order
62
- http://nedbatchelder.com/blog/200712/human_sorting.html
63
- (See Toothy's implementation in the comments)
64
- '''
65
- return [atoi(c) for c in re.split(r'(\d+)', text)]
66
-
67
-
68
- def get_model_state_file(checkpoint_dir, zero_stage):
69
- if not os.path.isdir(checkpoint_dir):
70
- raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
-
72
- # there should be only one file
73
- if zero_stage <= 2:
74
- file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
- elif zero_stage == 3:
76
- file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
-
78
- if not os.path.exists(file):
79
- raise FileNotFoundError(f"can't find model states file at '{file}'")
80
-
81
- return file
82
-
83
-
84
- def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
- # XXX: need to test that this simple glob rule works for multi-node setup too
86
- ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
-
88
- if len(ckpt_files) == 0:
89
- raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
-
91
- return ckpt_files
92
-
93
-
94
- def get_optim_files(checkpoint_dir):
95
- return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
-
97
-
98
- def get_model_state_files(checkpoint_dir):
99
- return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
-
101
-
102
- def parse_model_states(files):
103
- zero_model_states = []
104
- for file in files:
105
- state_dict = torch.load(file, map_location=device, weights_only=False)
106
-
107
- if BUFFER_NAMES not in state_dict:
108
- raise ValueError(f"{file} is not a model state checkpoint")
109
- buffer_names = state_dict[BUFFER_NAMES]
110
- if debug:
111
- print("Found buffers:", buffer_names)
112
-
113
- # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
- buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
- param_shapes = state_dict[PARAM_SHAPES]
116
-
117
- # collect parameters that are included in param_shapes
118
- param_names = []
119
- for s in param_shapes:
120
- for name in s.keys():
121
- param_names.append(name)
122
-
123
- # update with frozen parameters
124
- frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
- if frozen_param_shapes is not None:
126
- if debug:
127
- print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
- param_names += list(frozen_param_shapes.keys())
129
-
130
- # handle shared params
131
- shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
-
133
- ds_version = state_dict.get(DS_VERSION, None)
134
-
135
- frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
-
137
- z_model_state = zero_model_state(buffers=buffers,
138
- param_shapes=param_shapes,
139
- shared_params=shared_params,
140
- ds_version=ds_version,
141
- frozen_param_shapes=frozen_param_shapes,
142
- frozen_param_fragments=frozen_param_fragments)
143
- zero_model_states.append(z_model_state)
144
-
145
- return zero_model_states
146
-
147
-
148
- def parse_optim_states(files, ds_checkpoint_dir):
149
- total_files = len(files)
150
- state_dicts = []
151
- for f in tqdm(files, desc='Loading checkpoint shards'):
152
- state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
- # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
- # and also handle the case where it was already removed by another helper script
155
- state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
- state_dicts.append(state_dict)
157
-
158
- if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
- raise ValueError(f"{files[0]} is not a zero checkpoint")
160
- zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
- world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
-
163
- # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
- # parameters can be different from data parallelism for non-expert parameters. So we can just
165
- # use the max of the partition_count to get the dp world_size.
166
-
167
- if type(world_size) is list:
168
- world_size = max(world_size)
169
-
170
- if world_size != total_files:
171
- raise ValueError(
172
- f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
- "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
- )
175
-
176
- # the groups are named differently in each stage
177
- if zero_stage <= 2:
178
- fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
- elif zero_stage == 3:
180
- fp32_groups_key = FP32_FLAT_GROUPS
181
- else:
182
- raise ValueError(f"unknown zero stage {zero_stage}")
183
-
184
- fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
- return zero_stage, world_size, fp32_flat_groups
186
-
187
-
188
- def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
- """
190
- Returns fp32 state_dict reconstructed from ds checkpoint
191
-
192
- Args:
193
- - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
-
195
- """
196
- print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
-
198
- optim_files = get_optim_files(ds_checkpoint_dir)
199
- zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
- print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
-
202
- model_files = get_model_state_files(ds_checkpoint_dir)
203
-
204
- zero_model_states = parse_model_states(model_files)
205
- print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
-
207
- if zero_stage <= 2:
208
- return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
- exclude_frozen_parameters)
210
- elif zero_stage == 3:
211
- return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
- exclude_frozen_parameters)
213
-
214
-
215
- def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
- if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
- return
218
-
219
- frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
- frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
-
222
- if debug:
223
- num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
- print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
-
226
- wanted_params = len(frozen_param_shapes)
227
- wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
- avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
- print(f'Frozen params: Have {avail_numel} numels to process.')
230
- print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
-
232
- total_params = 0
233
- total_numel = 0
234
- for name, shape in frozen_param_shapes.items():
235
- total_params += 1
236
- unpartitioned_numel = shape.numel()
237
- total_numel += unpartitioned_numel
238
-
239
- state_dict[name] = frozen_param_fragments[name]
240
-
241
- if debug:
242
- print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
-
244
- print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
-
246
-
247
- def _has_callable(obj, fn):
248
- attr = getattr(obj, fn, None)
249
- return callable(attr)
250
-
251
-
252
- def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
- param_shapes = zero_model_states[0].param_shapes
254
-
255
- # Reconstruction protocol:
256
- #
257
- # XXX: document this
258
-
259
- if debug:
260
- for i in range(world_size):
261
- for j in range(len(fp32_flat_groups[0])):
262
- print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
-
264
- # XXX: memory usage doubles here (zero2)
265
- num_param_groups = len(fp32_flat_groups[0])
266
- merged_single_partition_of_fp32_groups = []
267
- for i in range(num_param_groups):
268
- merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
- full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
- merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
- avail_numel = sum(
272
- [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
-
274
- if debug:
275
- wanted_params = sum([len(shapes) for shapes in param_shapes])
276
- wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
- # not asserting if there is a mismatch due to possible padding
278
- print(f"Have {avail_numel} numels to process.")
279
- print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
-
281
- # params
282
- # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
- # out-of-core computing solution
284
- total_numel = 0
285
- total_params = 0
286
- for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
- offset = 0
288
- avail_numel = full_single_fp32_vector.numel()
289
- for name, shape in shapes.items():
290
-
291
- unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
- total_numel += unpartitioned_numel
293
- total_params += 1
294
-
295
- if debug:
296
- print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
- state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
- offset += unpartitioned_numel
299
-
300
- # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
- # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
- # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
- # live optimizer object, so we are checking that the numbers are within the right range
304
- align_to = 2 * world_size
305
-
306
- def zero2_align(x):
307
- return align_to * math.ceil(x / align_to)
308
-
309
- if debug:
310
- print(f"original offset={offset}, avail_numel={avail_numel}")
311
-
312
- offset = zero2_align(offset)
313
- avail_numel = zero2_align(avail_numel)
314
-
315
- if debug:
316
- print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
-
318
- # Sanity check
319
- if offset != avail_numel:
320
- raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
-
322
- print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
-
324
-
325
- def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
- exclude_frozen_parameters):
327
- state_dict = OrderedDict()
328
-
329
- # buffers
330
- buffers = zero_model_states[0].buffers
331
- state_dict.update(buffers)
332
- if debug:
333
- print(f"added {len(buffers)} buffers")
334
-
335
- if not exclude_frozen_parameters:
336
- _zero2_merge_frozen_params(state_dict, zero_model_states)
337
-
338
- _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
-
340
- # recover shared parameters
341
- for pair in zero_model_states[0].shared_params:
342
- if pair[1] in state_dict:
343
- state_dict[pair[0]] = state_dict[pair[1]]
344
-
345
- return state_dict
346
-
347
-
348
- def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
- remainder = unpartitioned_numel % world_size
350
- padding_numel = (world_size - remainder) if remainder else 0
351
- partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
- return partitioned_numel, padding_numel
353
-
354
-
355
- def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
- if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
- return
358
-
359
- if debug:
360
- for i in range(world_size):
361
- num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
- print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
-
364
- frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
- wanted_params = len(frozen_param_shapes)
366
- wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
- avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
- print(f'Frozen params: Have {avail_numel} numels to process.')
369
- print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
-
371
- total_params = 0
372
- total_numel = 0
373
- for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
- total_params += 1
375
- unpartitioned_numel = shape.numel()
376
- total_numel += unpartitioned_numel
377
-
378
- param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
- state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
-
381
- partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
-
383
- if debug:
384
- print(
385
- f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
- )
387
-
388
- print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
-
390
-
391
- class GatheredTensor:
392
- """
393
- A pseudo tensor that collects partitioned weights.
394
- It is more memory efficient when there are multiple groups.
395
- """
396
-
397
- def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
- self.flat_groups = flat_groups
399
- self.flat_groups_offset = flat_groups_offset
400
- self.offset = offset
401
- self.partitioned_numel = partitioned_numel
402
- self.shape = shape
403
- self.dtype = self.flat_groups[0][0].dtype
404
-
405
- def contiguous(self):
406
- """
407
- Merge partitioned weights from flat_groups into a single tensor.
408
- """
409
- end_idx = self.offset + self.partitioned_numel
410
- world_size = len(self.flat_groups)
411
- pad_flat_param_chunks = []
412
-
413
- for rank_i in range(world_size):
414
- # for each rank, we need to collect weights from related group/groups
415
- flat_groups_at_rank_i = self.flat_groups[rank_i]
416
- start_group_id = None
417
- end_group_id = None
418
- for group_id in range(len(self.flat_groups_offset)):
419
- if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
- start_group_id = group_id
421
- if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
- end_group_id = group_id
423
- break
424
- # collect weights from related group/groups
425
- for group_id in range(start_group_id, end_group_id + 1):
426
- flat_tensor = flat_groups_at_rank_i[group_id]
427
- start_offset = self.offset - self.flat_groups_offset[group_id]
428
- end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
- pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
-
431
- # collect weights from all ranks
432
- pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
- param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
- return param
435
-
436
-
437
- def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
- param_shapes = zero_model_states[0].param_shapes
439
- avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
-
441
- # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
- # param, re-consolidating each param, while dealing with padding if any
443
-
444
- # merge list of dicts, preserving order
445
- param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
-
447
- if debug:
448
- for i in range(world_size):
449
- print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
-
451
- wanted_params = len(param_shapes)
452
- wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
- # not asserting if there is a mismatch due to possible padding
454
- avail_numel = fp32_flat_groups[0].numel() * world_size
455
- print(f"Trainable params: Have {avail_numel} numels to process.")
456
- print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
-
458
- # params
459
- # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
- # out-of-core computing solution
461
- offset = 0
462
- total_numel = 0
463
- total_params = 0
464
- flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
- for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
- unpartitioned_numel = shape.numel()
467
- total_numel += unpartitioned_numel
468
- total_params += 1
469
- partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
-
471
- if debug:
472
- print(
473
- f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
- )
475
-
476
- # memory efficient tensor
477
- tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
- state_dict[name] = tensor
479
- offset += partitioned_numel
480
-
481
- offset *= world_size
482
-
483
- # Sanity check
484
- if offset != avail_numel:
485
- raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
-
487
- print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
-
489
-
490
- def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
- exclude_frozen_parameters):
492
- state_dict = OrderedDict()
493
-
494
- # buffers
495
- buffers = zero_model_states[0].buffers
496
- state_dict.update(buffers)
497
- if debug:
498
- print(f"added {len(buffers)} buffers")
499
-
500
- if not exclude_frozen_parameters:
501
- _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
-
503
- _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
-
505
- # recover shared parameters
506
- for pair in zero_model_states[0].shared_params:
507
- if pair[1] in state_dict:
508
- state_dict[pair[0]] = state_dict[pair[1]]
509
-
510
- return state_dict
511
-
512
-
513
- def to_torch_tensor(state_dict, return_empty_tensor=False):
514
- """
515
- Convert state_dict of GatheredTensor to torch tensor
516
- """
517
- torch_state_dict = {}
518
- converted_tensors = {}
519
- for name, tensor in state_dict.items():
520
- tensor_id = id(tensor)
521
- if tensor_id in converted_tensors: # shared tensors
522
- shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
- torch_state_dict[name] = shared_tensor
524
- else:
525
- converted_tensors[tensor_id] = name
526
- if return_empty_tensor:
527
- torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
- else:
529
- torch_state_dict[name] = tensor.contiguous()
530
- return torch_state_dict
531
-
532
-
533
- def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
- tag=None,
535
- exclude_frozen_parameters=False,
536
- lazy_mode=False):
537
- """
538
- Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
- ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
- via a model hub.
541
-
542
- Args:
543
- - ``checkpoint_dir``: path to the desired checkpoint folder
544
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
- - ``exclude_frozen_parameters``: exclude frozen parameters
546
- - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
- Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
-
549
- Returns:
550
- - pytorch ``state_dict``
551
-
552
- A typical usage might be ::
553
-
554
- from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
- # do the training and checkpoint saving
556
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
- model = model.cpu() # move to cpu
558
- model.load_state_dict(state_dict)
559
- # submit to model hub or save the model to share with others
560
-
561
- In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
- application. i.e. you will need to re-initialize the deepspeed engine, since
563
- ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
-
565
- If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
-
567
- Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
- You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
- the checkpoint. Or you can load state_dict in lazy mode ::
570
-
571
- from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
- for name, lazy_tensor in state_dict.item():
574
- tensor = lazy_tensor.contiguous() # to cpu
575
- print(name, tensor)
576
- # del tensor to release memory if it no longer in use
577
- """
578
- if tag is None:
579
- latest_path = os.path.join(checkpoint_dir, 'latest')
580
- if os.path.isfile(latest_path):
581
- with open(latest_path, 'r') as fd:
582
- tag = fd.read().strip()
583
- else:
584
- raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
-
586
- ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
-
588
- if not os.path.isdir(ds_checkpoint_dir):
589
- raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
-
591
- state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
- if lazy_mode:
593
- return state_dict
594
- else:
595
- return to_torch_tensor(state_dict)
596
-
597
-
598
- def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
- output_dir,
600
- max_shard_size="5GB",
601
- safe_serialization=False,
602
- tag=None,
603
- exclude_frozen_parameters=False):
604
- """
605
- Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
- loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
-
608
- Args:
609
- - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
- - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
- - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
- - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
- - ``exclude_frozen_parameters``: exclude frozen parameters
615
- """
616
-
617
- # Dependency pre-check
618
- if safe_serialization:
619
- try:
620
- from safetensors.torch import save_file
621
- except ImportError:
622
- print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
- raise
624
- if max_shard_size is not None:
625
- try:
626
- from huggingface_hub import split_torch_state_dict_into_shards
627
- except ImportError:
628
- print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
- raise
630
-
631
- # Convert zero checkpoint to state_dict
632
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
- tag,
634
- exclude_frozen_parameters,
635
- lazy_mode=True)
636
-
637
- # Shard the model if it is too big.
638
- weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
- if max_shard_size is not None:
640
- filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
- # an memory-efficient approach for sharding
642
- empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
- state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
- filename_pattern=filename_pattern,
645
- max_shard_size=max_shard_size)
646
- else:
647
- from collections import namedtuple
648
- StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
- state_dict_split = StateDictSplit(is_sharded=False,
650
- filename_to_tensors={weights_name: list(state_dict.keys())})
651
-
652
- # Save the model by shard
653
- os.makedirs(output_dir, exist_ok=True)
654
- filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
- for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
- shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
- shard_state_dict = to_torch_tensor(shard_state_dict)
658
- output_path = os.path.join(output_dir, shard_file)
659
- if safe_serialization:
660
- save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
- else:
662
- torch.save(shard_state_dict, output_path)
663
- # release the memory of current shard
664
- for tensor_name in list(shard_state_dict.keys()):
665
- del state_dict[tensor_name]
666
- del shard_state_dict[tensor_name]
667
- del shard_state_dict
668
- gc.collect()
669
-
670
- # Save index if sharded
671
- if state_dict_split.is_sharded:
672
- index = {
673
- "metadata": state_dict_split.metadata,
674
- "weight_map": state_dict_split.tensor_to_filename,
675
- }
676
- save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
- save_index_file = os.path.join(output_dir, save_index_file)
678
- with open(save_index_file, "w", encoding="utf-8") as f:
679
- content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
- f.write(content)
681
-
682
-
683
- def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
- """
685
- 1. Put the provided model to cpu
686
- 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
- 3. Load it into the provided model
688
-
689
- Args:
690
- - ``model``: the model object to update
691
- - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
-
694
- Returns:
695
- - ``model`: modified model
696
-
697
- Make sure you have plenty of CPU memory available before you call this function. If you don't
698
- have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
- conveniently placed for you in the checkpoint folder.
700
-
701
- A typical usage might be ::
702
-
703
- from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
- model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
- # submit to model hub or save the model to share with others
706
-
707
- Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
- of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
- ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
-
711
- """
712
- logger.info(f"Extracting fp32 weights")
713
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
-
715
- logger.info(f"Overwriting model with fp32 weights")
716
- model = model.cpu()
717
- model.load_state_dict(state_dict, strict=False)
718
-
719
- return model
720
-
721
-
722
- if __name__ == "__main__":
723
- parser = argparse.ArgumentParser()
724
- parser.add_argument("checkpoint_dir",
725
- type=str,
726
- help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
- parser.add_argument("output_dir",
728
- type=str,
729
- help="directory to the pytorch fp32 state_dict output files"
730
- "(e.g. path/checkpoint-12-output/)")
731
- parser.add_argument(
732
- "--max_shard_size",
733
- type=str,
734
- default="5GB",
735
- help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
- "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
- "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
- "without CPU OOM issues.")
739
- parser.add_argument(
740
- "--safe_serialization",
741
- default=False,
742
- action='store_true',
743
- help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
- parser.add_argument("-t",
745
- "--tag",
746
- type=str,
747
- default=None,
748
- help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
- parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
- parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
- args = parser.parse_args()
752
-
753
- debug = args.debug
754
-
755
- convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
- args.output_dir,
757
- max_shard_size=args.max_shard_size,
758
- safe_serialization=args.safe_serialization,
759
- tag=args.tag,
760
- exclude_frozen_parameters=args.exclude_frozen_parameters)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0318-afford-three-alternate-pretrain/logs/roboticDiffusionTransformer/1742317327.22402/events.out.tfevents.1742317327.computer4.1683012.1 DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:e838d871b5ea6f9554e7ed5663c302dbb0fc444ef5db91b3df9f1ae8f7259cf4
3
- size 2792
 
 
 
 
0318-afford-three-alternate-pretrain/logs/roboticDiffusionTransformer/1742317327.2268047/hparams.yml DELETED
@@ -1,48 +0,0 @@
1
- adam_beta1: 0.9
2
- adam_beta2: 0.999
3
- adam_epsilon: 1.0e-08
4
- adam_weight_decay: 0.01
5
- allow_tf32: false
6
- alpha: 0.9
7
- cam_ext_mask_prob: -1.0
8
- checkpointing_period: 2000
9
- checkpoints_total_limit: 15
10
- cond_mask_prob: 0.1
11
- config_path: configs/base.yaml
12
- dataloader_num_workers: 8
13
- dataset_type: finetune
14
- deepspeed: ./configs/zero2.json
15
- gradient_accumulation_steps: 1
16
- gradient_checkpointing: false
17
- hub_model_id: null
18
- hub_token: null
19
- image_aug: true
20
- learning_rate: 0.0001
21
- load_from_hdf5: true
22
- local_rank: 0
23
- logging_dir: logs
24
- lr_num_cycles: 1
25
- lr_power: 1.0
26
- lr_scheduler: constant_with_warmup
27
- lr_warmup_steps: 500
28
- max_grad_norm: 1.0
29
- max_train_steps: 160000
30
- mixed_precision: bf16
31
- num_sample_batches: 2
32
- num_train_epochs: 328
33
- output_dir: /mnt/data/xurongtao/checkpoints/0318-afford-three-alternate-pretrain_front/
34
- precomp_lang_embed: false
35
- pretrained_model_name_or_path: /mnt/data/xurongtao/checkpoints/a0-pretrain-1b-5cards/checkpoint-84600
36
- pretrained_text_encoder_name_or_path: google/t5-v1_1-xxl
37
- pretrained_vision_encoder_name_or_path: google/siglip-so400m-patch14-384
38
- push_to_hub: false
39
- report_to: tensorboard
40
- resume_from_checkpoint: null
41
- sample_batch_size: 70
42
- sample_period: 150
43
- scale_lr: false
44
- seed: null
45
- set_grads_to_none: false
46
- state_noise_snr: 40.0
47
- train_batch_size: 7
48
- use_8bit_adam: false
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0318-afford-three-alternate-pretrain/logs/roboticDiffusionTransformer/1742317473.216907/events.out.tfevents.1742317473.computer4.1702977.1 DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:6e287fcb285972d3a369dfe2282d44c988559d0051bea9e891b2724cb324edf9
3
- size 2792
 
 
 
 
0318-afford-three-alternate-pretrain/logs/roboticDiffusionTransformer/1742317473.2195845/hparams.yml DELETED
@@ -1,48 +0,0 @@
1
- adam_beta1: 0.9
2
- adam_beta2: 0.999
3
- adam_epsilon: 1.0e-08
4
- adam_weight_decay: 0.01
5
- allow_tf32: false
6
- alpha: 0.9
7
- cam_ext_mask_prob: -1.0
8
- checkpointing_period: 2000
9
- checkpoints_total_limit: 15
10
- cond_mask_prob: 0.1
11
- config_path: configs/base.yaml
12
- dataloader_num_workers: 8
13
- dataset_type: finetune
14
- deepspeed: ./configs/zero2.json
15
- gradient_accumulation_steps: 1
16
- gradient_checkpointing: false
17
- hub_model_id: null
18
- hub_token: null
19
- image_aug: true
20
- learning_rate: 0.0001
21
- load_from_hdf5: true
22
- local_rank: 0
23
- logging_dir: logs
24
- lr_num_cycles: 1
25
- lr_power: 1.0
26
- lr_scheduler: constant_with_warmup
27
- lr_warmup_steps: 500
28
- max_grad_norm: 1.0
29
- max_train_steps: 160000
30
- mixed_precision: bf16
31
- num_sample_batches: 2
32
- num_train_epochs: 328
33
- output_dir: /mnt/data/xurongtao/checkpoints/0318-afford-three-alternate-pretrain_front/
34
- precomp_lang_embed: false
35
- pretrained_model_name_or_path: /mnt/data/xurongtao/checkpoints/a0-pretrain-1b-5cards/checkpoint-84600
36
- pretrained_text_encoder_name_or_path: google/t5-v1_1-xxl
37
- pretrained_vision_encoder_name_or_path: google/siglip-so400m-patch14-384
38
- push_to_hub: false
39
- report_to: tensorboard
40
- resume_from_checkpoint: null
41
- sample_batch_size: 70
42
- sample_period: 150
43
- scale_lr: false
44
- seed: null
45
- set_grads_to_none: false
46
- state_noise_snr: 40.0
47
- train_batch_size: 7
48
- use_8bit_adam: false
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0318-afford-three-alternate-pretrain/logs/roboticDiffusionTransformer/1742317614.8297184/events.out.tfevents.1742317614.computer4.1722935.1 DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:fc29e5cf79dbaf5bf122321d946ffe7081b183d1529e88dad3fe1dc5d70d3d64
3
- size 2792
 
 
 
 
0318-afford-three-alternate-pretrain/logs/roboticDiffusionTransformer/1742317614.8324273/hparams.yml DELETED
@@ -1,48 +0,0 @@
1
- adam_beta1: 0.9
2
- adam_beta2: 0.999
3
- adam_epsilon: 1.0e-08
4
- adam_weight_decay: 0.01
5
- allow_tf32: false
6
- alpha: 0.9
7
- cam_ext_mask_prob: -1.0
8
- checkpointing_period: 2000
9
- checkpoints_total_limit: 15
10
- cond_mask_prob: 0.1
11
- config_path: configs/base.yaml
12
- dataloader_num_workers: 8
13
- dataset_type: finetune
14
- deepspeed: ./configs/zero2.json
15
- gradient_accumulation_steps: 1
16
- gradient_checkpointing: false
17
- hub_model_id: null
18
- hub_token: null
19
- image_aug: true
20
- learning_rate: 0.0001
21
- load_from_hdf5: true
22
- local_rank: 0
23
- logging_dir: logs
24
- lr_num_cycles: 1
25
- lr_power: 1.0
26
- lr_scheduler: constant_with_warmup
27
- lr_warmup_steps: 500
28
- max_grad_norm: 1.0
29
- max_train_steps: 160000
30
- mixed_precision: bf16
31
- num_sample_batches: 2
32
- num_train_epochs: 4572
33
- output_dir: /mnt/data/xurongtao/checkpoints/0318-afford-three-alternate-pretrain_front/
34
- precomp_lang_embed: false
35
- pretrained_model_name_or_path: /mnt/data/xurongtao/checkpoints/a0-pretrain-1b-5cards/checkpoint-84600
36
- pretrained_text_encoder_name_or_path: google/t5-v1_1-xxl
37
- pretrained_vision_encoder_name_or_path: google/siglip-so400m-patch14-384
38
- push_to_hub: false
39
- report_to: tensorboard
40
- resume_from_checkpoint: null
41
- sample_batch_size: 70
42
- sample_period: 150
43
- scale_lr: false
44
- seed: null
45
- set_grads_to_none: false
46
- state_noise_snr: 40.0
47
- train_batch_size: 70
48
- use_8bit_adam: false
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0318-afford-three-alternate-pretrain/logs/roboticDiffusionTransformer/events.out.tfevents.1742317327.computer4.1683012.0 DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:9c3f31b31b6ef1c1c439122b2a52a4171821875557d41ee685eacbb05c68af64
3
- size 88
 
 
 
 
0318-afford-three-alternate-pretrain/logs/roboticDiffusionTransformer/events.out.tfevents.1742317473.computer4.1702977.0 DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:6de2e1578be77b97d67da22206a192195869a71426f661a7b140774ed767f5dd
3
- size 22120
 
 
 
 
0318-afford-three-alternate-pretrain/logs/roboticDiffusionTransformer/events.out.tfevents.1742317614.computer4.1722935.0 DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:a6eee1d462c65d521de4cf525b6b5e0b083a288a600a8af4c9d4bc57dd09cca6
3
- size 9896307