diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-42000/README.md b/afford_1b_three_qwen_warmup_0224/checkpoint-42000/README.md deleted file mode 100644 index e5a140c69d5c2887bfe0600718466c0cbcc4f359..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-42000/README.md +++ /dev/null @@ -1,9 +0,0 @@ ---- -tags: -- model_hub_mixin -- pytorch_model_hub_mixin ---- - -This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: -- Library: https://huggingface.co/robotics-diffusion-transformer/rdt-1b -- Docs: [More Information Needed] \ No newline at end of file diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-42000/config.json b/afford_1b_three_qwen_warmup_0224/checkpoint-42000/config.json deleted file mode 100644 index 8fc22a260a06ec3d871d840f4308c0d9c8227c9a..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-42000/config.json +++ /dev/null @@ -1,49 +0,0 @@ -{ - "action_dim": 2, - "ema": { - "inv_gamma": 1.0, - "max_value": 0.9999, - "min_value": 0.0, - "power": 0.75, - "update_after_step": 0 - }, - "img_adaptor": "mlp2x_gelu", - "img_cond_len": 2916, - "img_pos_embed_config": [ - [ - "image", - [ - 2, - 2, - -729 - ] - ] - ], - "img_token_dim": 1152, - "lang_adaptor": "mlp2x_gelu", - "lang_pos_embed_config": [ - [ - "lang", - -1024 - ] - ], - "lang_token_dim": 3584, - "max_lang_cond_len": 1024, - "noise_scheduler": { - "beta_schedule": "squaredcos_cap_v2", - "clip_sample": false, - "num_inference_timesteps": 5, - "num_train_timesteps": 1000, - "prediction_type": "sample", - "type": "ddpm" - }, - "pred_horizon": 4, - "rdt": { - "cond_pos_embed_type": "multimodal", - "depth": 28, - "hidden_size": 2048, - "num_heads": 32 - }, - "state_adaptor": "mlp3x_gelu", - "state_token_dim": 2 -} \ No newline at end of file diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-42000/ema/model.safetensors b/afford_1b_three_qwen_warmup_0224/checkpoint-42000/ema/model.safetensors deleted file mode 100644 index 53419415abdd748f55aa8416ca2aacd9be868e5a..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-42000/ema/model.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7522fec1fefdaf5d519c646492849f79e6662b3b5e003d96b8bf98b484dd1e84 -size 2437379836 diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-42000/latest b/afford_1b_three_qwen_warmup_0224/checkpoint-42000/latest deleted file mode 100644 index 7b2c8602be034ae63f23b293f8d037fa7afa0c54..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-42000/latest +++ /dev/null @@ -1 +0,0 @@ -pytorch_model \ No newline at end of file diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-42000/pytorch_model.bin b/afford_1b_three_qwen_warmup_0224/checkpoint-42000/pytorch_model.bin deleted file mode 100644 index a9dfa85e5d396319c9c464dfa0d0457b49903f74..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-42000/pytorch_model.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6efee3028c24664050d666927b14d5a7a34590c1af3c89869ab93fc2dc874321 -size 2437429626 diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-42000/pytorch_model/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt b/afford_1b_three_qwen_warmup_0224/checkpoint-42000/pytorch_model/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt deleted file mode 100644 index 07078da14ed2d7f996dfd542f642938192299502..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-42000/pytorch_model/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9a8c89b0e35d171ebfa58596b9c89935ae7546b3b58eac7be5470371e1751b1b -size 3655985904 diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-42000/pytorch_model/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt b/afford_1b_three_qwen_warmup_0224/checkpoint-42000/pytorch_model/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt deleted file mode 100644 index f9f62b5fc47aebb307d6ec720112ad772761c129..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-42000/pytorch_model/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:32afc2a5bd489709d2999cf6731000048547f5f695629881b3fcb655e7ecf7f5 -size 3655985968 diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-42000/pytorch_model/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt b/afford_1b_three_qwen_warmup_0224/checkpoint-42000/pytorch_model/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt deleted file mode 100644 index 93fdad2b1d70d2b375b95122f62e5bb6f67e3a1a..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-42000/pytorch_model/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bc240f986158546b97a5199c1c24f84d2acbbd81d4a8ac90923ace1e0f88e60c -size 3655986224 diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-42000/pytorch_model/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt b/afford_1b_three_qwen_warmup_0224/checkpoint-42000/pytorch_model/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt deleted file mode 100644 index 2b13899e21569edf55da9720149ccacb2e16dbe6..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-42000/pytorch_model/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c51c5d7e8ebeb6958e5ee9cd1a1902ba98bd92270aac7aa4b43f1cc9c1727218 -size 3655986416 diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-42000/pytorch_model/mp_rank_00_model_states.pt b/afford_1b_three_qwen_warmup_0224/checkpoint-42000/pytorch_model/mp_rank_00_model_states.pt deleted file mode 100644 index 7a721055ac56e4ec34a20af0c5d99ec390362138..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-42000/pytorch_model/mp_rank_00_model_states.pt +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ab4ee2d16bfdfae8d6e3bd7f39bc76d70a669a4b108f62af7f020b3531d00cf8 -size 2437472876 diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-42000/random_states_0.pkl b/afford_1b_three_qwen_warmup_0224/checkpoint-42000/random_states_0.pkl deleted file mode 100644 index b85c7000aab54535392b4c5ab9c452b6fa408d31..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-42000/random_states_0.pkl +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3447d27e28661f989f75037c9261766da78a679c71e507ddb80a05a14f64793e -size 15124 diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-42000/random_states_1.pkl b/afford_1b_three_qwen_warmup_0224/checkpoint-42000/random_states_1.pkl deleted file mode 100644 index e21a4b7a3987faec9d183c6c63a87956f5c52b51..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-42000/random_states_1.pkl +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a9731315115931d65b66d4eaf79a17a5b956732fa0fb5becdeb58860f1e5a36d -size 15060 diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-42000/random_states_2.pkl b/afford_1b_three_qwen_warmup_0224/checkpoint-42000/random_states_2.pkl deleted file mode 100644 index fb3ae3c36c42c22a11884511352e225f8a6096fc..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-42000/random_states_2.pkl +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:61d52f3e71ef5bdce09485f4f7aa914a28d4e6b40f98da013e76e3d6d3b8ab86 -size 15060 diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-42000/random_states_3.pkl b/afford_1b_three_qwen_warmup_0224/checkpoint-42000/random_states_3.pkl deleted file mode 100644 index 12e4692e235a73c7d5a1488f3e8794ee5fbcf372..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-42000/random_states_3.pkl +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6ab3b81e3c2a7a80ef466abb3a9fb9b81c577072f6047f61f18c56ebd30d4e30 -size 14996 diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-42000/scheduler.bin b/afford_1b_three_qwen_warmup_0224/checkpoint-42000/scheduler.bin deleted file mode 100644 index 6fe8d695bd13f9afd76c81a49a281e8a6bf6b288..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-42000/scheduler.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9f16f2c5df6f7f11b1b163edd00237d4e57b97e8d09d9544d52df274294b4163 -size 1000 diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-42000/zero_to_fp32.py b/afford_1b_three_qwen_warmup_0224/checkpoint-42000/zero_to_fp32.py deleted file mode 100644 index 0e759146cadd92ddfefab3680146c2bd6a2b5c04..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-42000/zero_to_fp32.py +++ /dev/null @@ -1,760 +0,0 @@ -#!/usr/bin/env python - -# Copyright (c) Microsoft Corporation. -# SPDX-License-Identifier: Apache-2.0 - -# DeepSpeed Team - -# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets -# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in -# the future. Once extracted, the weights don't require DeepSpeed and can be used in any -# application. -# -# example: -# python zero_to_fp32.py . output_dir/ -# or -# python zero_to_fp32.py . output_dir/ --safe_serialization - -import argparse -import torch -import glob -import math -import os -import re -import gc -import json -import numpy as np -from tqdm import tqdm -from collections import OrderedDict -from dataclasses import dataclass - -# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with -# DeepSpeed data structures it has to be available in the current python environment. -from deepspeed.utils import logger -from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, - FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, - FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) - - -@dataclass -class zero_model_state: - buffers: dict() - param_shapes: dict() - shared_params: list - ds_version: int - frozen_param_shapes: dict() - frozen_param_fragments: dict() - - -debug = 0 - -# load to cpu -device = torch.device('cpu') - - -def atoi(text): - return int(text) if text.isdigit() else text - - -def natural_keys(text): - ''' - alist.sort(key=natural_keys) sorts in human order - http://nedbatchelder.com/blog/200712/human_sorting.html - (See Toothy's implementation in the comments) - ''' - return [atoi(c) for c in re.split(r'(\d+)', text)] - - -def get_model_state_file(checkpoint_dir, zero_stage): - if not os.path.isdir(checkpoint_dir): - raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") - - # there should be only one file - if zero_stage <= 2: - file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") - elif zero_stage == 3: - file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") - - if not os.path.exists(file): - raise FileNotFoundError(f"can't find model states file at '{file}'") - - return file - - -def get_checkpoint_files(checkpoint_dir, glob_pattern): - # XXX: need to test that this simple glob rule works for multi-node setup too - ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) - - if len(ckpt_files) == 0: - raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") - - return ckpt_files - - -def get_optim_files(checkpoint_dir): - return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") - - -def get_model_state_files(checkpoint_dir): - return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") - - -def parse_model_states(files): - zero_model_states = [] - for file in files: - state_dict = torch.load(file, map_location=device, weights_only=False) - - if BUFFER_NAMES not in state_dict: - raise ValueError(f"{file} is not a model state checkpoint") - buffer_names = state_dict[BUFFER_NAMES] - if debug: - print("Found buffers:", buffer_names) - - # recover just the buffers while restoring them to fp32 if they were saved in fp16 - buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} - param_shapes = state_dict[PARAM_SHAPES] - - # collect parameters that are included in param_shapes - param_names = [] - for s in param_shapes: - for name in s.keys(): - param_names.append(name) - - # update with frozen parameters - frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) - if frozen_param_shapes is not None: - if debug: - print(f"Found frozen_param_shapes: {frozen_param_shapes}") - param_names += list(frozen_param_shapes.keys()) - - # handle shared params - shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] - - ds_version = state_dict.get(DS_VERSION, None) - - frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) - - z_model_state = zero_model_state(buffers=buffers, - param_shapes=param_shapes, - shared_params=shared_params, - ds_version=ds_version, - frozen_param_shapes=frozen_param_shapes, - frozen_param_fragments=frozen_param_fragments) - zero_model_states.append(z_model_state) - - return zero_model_states - - -def parse_optim_states(files, ds_checkpoint_dir): - total_files = len(files) - state_dicts = [] - for f in tqdm(files, desc='Loading checkpoint shards'): - state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False) - # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights - # and also handle the case where it was already removed by another helper script - state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) - state_dicts.append(state_dict) - - if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: - raise ValueError(f"{files[0]} is not a zero checkpoint") - zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] - world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] - - # For ZeRO-2 each param group can have different partition_count as data parallelism for expert - # parameters can be different from data parallelism for non-expert parameters. So we can just - # use the max of the partition_count to get the dp world_size. - - if type(world_size) is list: - world_size = max(world_size) - - if world_size != total_files: - raise ValueError( - f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " - "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." - ) - - # the groups are named differently in each stage - if zero_stage <= 2: - fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS - elif zero_stage == 3: - fp32_groups_key = FP32_FLAT_GROUPS - else: - raise ValueError(f"unknown zero stage {zero_stage}") - - fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] - return zero_stage, world_size, fp32_flat_groups - - -def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters): - """ - Returns fp32 state_dict reconstructed from ds checkpoint - - Args: - - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) - - """ - print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") - - optim_files = get_optim_files(ds_checkpoint_dir) - zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) - print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") - - model_files = get_model_state_files(ds_checkpoint_dir) - - zero_model_states = parse_model_states(model_files) - print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') - - if zero_stage <= 2: - return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, - exclude_frozen_parameters) - elif zero_stage == 3: - return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, - exclude_frozen_parameters) - - -def _zero2_merge_frozen_params(state_dict, zero_model_states): - if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: - return - - frozen_param_shapes = zero_model_states[0].frozen_param_shapes - frozen_param_fragments = zero_model_states[0].frozen_param_fragments - - if debug: - num_elem = sum(s.numel() for s in frozen_param_shapes.values()) - print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') - - wanted_params = len(frozen_param_shapes) - wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) - avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) - print(f'Frozen params: Have {avail_numel} numels to process.') - print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') - - total_params = 0 - total_numel = 0 - for name, shape in frozen_param_shapes.items(): - total_params += 1 - unpartitioned_numel = shape.numel() - total_numel += unpartitioned_numel - - state_dict[name] = frozen_param_fragments[name] - - if debug: - print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") - - print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") - - -def _has_callable(obj, fn): - attr = getattr(obj, fn, None) - return callable(attr) - - -def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): - param_shapes = zero_model_states[0].param_shapes - - # Reconstruction protocol: - # - # XXX: document this - - if debug: - for i in range(world_size): - for j in range(len(fp32_flat_groups[0])): - print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") - - # XXX: memory usage doubles here (zero2) - num_param_groups = len(fp32_flat_groups[0]) - merged_single_partition_of_fp32_groups = [] - for i in range(num_param_groups): - merged_partitions = [sd[i] for sd in fp32_flat_groups] - full_single_fp32_vector = torch.cat(merged_partitions, 0) - merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) - avail_numel = sum( - [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) - - if debug: - wanted_params = sum([len(shapes) for shapes in param_shapes]) - wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) - # not asserting if there is a mismatch due to possible padding - print(f"Have {avail_numel} numels to process.") - print(f"Need {wanted_numel} numels in {wanted_params} params.") - - # params - # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support - # out-of-core computing solution - total_numel = 0 - total_params = 0 - for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): - offset = 0 - avail_numel = full_single_fp32_vector.numel() - for name, shape in shapes.items(): - - unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape) - total_numel += unpartitioned_numel - total_params += 1 - - if debug: - print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") - state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) - offset += unpartitioned_numel - - # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and - # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex - # paddings performed in the code it's almost impossible to predict the exact numbers w/o the - # live optimizer object, so we are checking that the numbers are within the right range - align_to = 2 * world_size - - def zero2_align(x): - return align_to * math.ceil(x / align_to) - - if debug: - print(f"original offset={offset}, avail_numel={avail_numel}") - - offset = zero2_align(offset) - avail_numel = zero2_align(avail_numel) - - if debug: - print(f"aligned offset={offset}, avail_numel={avail_numel}") - - # Sanity check - if offset != avail_numel: - raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") - - print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") - - -def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, - exclude_frozen_parameters): - state_dict = OrderedDict() - - # buffers - buffers = zero_model_states[0].buffers - state_dict.update(buffers) - if debug: - print(f"added {len(buffers)} buffers") - - if not exclude_frozen_parameters: - _zero2_merge_frozen_params(state_dict, zero_model_states) - - _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) - - # recover shared parameters - for pair in zero_model_states[0].shared_params: - if pair[1] in state_dict: - state_dict[pair[0]] = state_dict[pair[1]] - - return state_dict - - -def zero3_partitioned_param_info(unpartitioned_numel, world_size): - remainder = unpartitioned_numel % world_size - padding_numel = (world_size - remainder) if remainder else 0 - partitioned_numel = math.ceil(unpartitioned_numel / world_size) - return partitioned_numel, padding_numel - - -def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): - if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: - return - - if debug: - for i in range(world_size): - num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) - print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') - - frozen_param_shapes = zero_model_states[0].frozen_param_shapes - wanted_params = len(frozen_param_shapes) - wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) - avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size - print(f'Frozen params: Have {avail_numel} numels to process.') - print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') - - total_params = 0 - total_numel = 0 - for name, shape in zero_model_states[0].frozen_param_shapes.items(): - total_params += 1 - unpartitioned_numel = shape.numel() - total_numel += unpartitioned_numel - - param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) - state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) - - partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) - - if debug: - print( - f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" - ) - - print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") - - -class GatheredTensor: - """ - A pseudo tensor that collects partitioned weights. - It is more memory efficient when there are multiple groups. - """ - - def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape): - self.flat_groups = flat_groups - self.flat_groups_offset = flat_groups_offset - self.offset = offset - self.partitioned_numel = partitioned_numel - self.shape = shape - self.dtype = self.flat_groups[0][0].dtype - - def contiguous(self): - """ - Merge partitioned weights from flat_groups into a single tensor. - """ - end_idx = self.offset + self.partitioned_numel - world_size = len(self.flat_groups) - pad_flat_param_chunks = [] - - for rank_i in range(world_size): - # for each rank, we need to collect weights from related group/groups - flat_groups_at_rank_i = self.flat_groups[rank_i] - start_group_id = None - end_group_id = None - for group_id in range(len(self.flat_groups_offset)): - if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]: - start_group_id = group_id - if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]: - end_group_id = group_id - break - # collect weights from related group/groups - for group_id in range(start_group_id, end_group_id + 1): - flat_tensor = flat_groups_at_rank_i[group_id] - start_offset = self.offset - self.flat_groups_offset[group_id] - end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id] - pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset]) - - # collect weights from all ranks - pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0) - param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous() - return param - - -def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): - param_shapes = zero_model_states[0].param_shapes - avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size - - # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each - # param, re-consolidating each param, while dealing with padding if any - - # merge list of dicts, preserving order - param_shapes = {k: v for d in param_shapes for k, v in d.items()} - - if debug: - for i in range(world_size): - print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") - - wanted_params = len(param_shapes) - wanted_numel = sum(shape.numel() for shape in param_shapes.values()) - # not asserting if there is a mismatch due to possible padding - avail_numel = fp32_flat_groups[0].numel() * world_size - print(f"Trainable params: Have {avail_numel} numels to process.") - print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") - - # params - # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support - # out-of-core computing solution - offset = 0 - total_numel = 0 - total_params = 0 - flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]])) - for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'): - unpartitioned_numel = shape.numel() - total_numel += unpartitioned_numel - total_params += 1 - partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) - - if debug: - print( - f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" - ) - - # memory efficient tensor - tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape) - state_dict[name] = tensor - offset += partitioned_numel - - offset *= world_size - - # Sanity check - if offset != avail_numel: - raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") - - print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") - - -def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, - exclude_frozen_parameters): - state_dict = OrderedDict() - - # buffers - buffers = zero_model_states[0].buffers - state_dict.update(buffers) - if debug: - print(f"added {len(buffers)} buffers") - - if not exclude_frozen_parameters: - _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) - - _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) - - # recover shared parameters - for pair in zero_model_states[0].shared_params: - if pair[1] in state_dict: - state_dict[pair[0]] = state_dict[pair[1]] - - return state_dict - - -def to_torch_tensor(state_dict, return_empty_tensor=False): - """ - Convert state_dict of GatheredTensor to torch tensor - """ - torch_state_dict = {} - converted_tensors = {} - for name, tensor in state_dict.items(): - tensor_id = id(tensor) - if tensor_id in converted_tensors: # shared tensors - shared_tensor = torch_state_dict[converted_tensors[tensor_id]] - torch_state_dict[name] = shared_tensor - else: - converted_tensors[tensor_id] = name - if return_empty_tensor: - torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype) - else: - torch_state_dict[name] = tensor.contiguous() - return torch_state_dict - - -def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, - tag=None, - exclude_frozen_parameters=False, - lazy_mode=False): - """ - Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with - ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example - via a model hub. - - Args: - - ``checkpoint_dir``: path to the desired checkpoint folder - - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` - - ``exclude_frozen_parameters``: exclude frozen parameters - - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient. - Convert the pesduo tensor to torch tensor by ``.contiguous()`` - - Returns: - - pytorch ``state_dict`` - - A typical usage might be :: - - from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint - # do the training and checkpoint saving - state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu - model = model.cpu() # move to cpu - model.load_state_dict(state_dict) - # submit to model hub or save the model to share with others - - In this example the ``model`` will no longer be usable in the deepspeed context of the same - application. i.e. you will need to re-initialize the deepspeed engine, since - ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. - - If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. - - Note: the above usage may not work if your application doesn't have sufficient free CPU memory. - You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with - the checkpoint. Or you can load state_dict in lazy mode :: - - from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint - state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu - for name, lazy_tensor in state_dict.item(): - tensor = lazy_tensor.contiguous() # to cpu - print(name, tensor) - # del tensor to release memory if it no longer in use - """ - if tag is None: - latest_path = os.path.join(checkpoint_dir, 'latest') - if os.path.isfile(latest_path): - with open(latest_path, 'r') as fd: - tag = fd.read().strip() - else: - raise ValueError(f"Unable to find 'latest' file at {latest_path}") - - ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) - - if not os.path.isdir(ds_checkpoint_dir): - raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") - - state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters) - if lazy_mode: - return state_dict - else: - return to_torch_tensor(state_dict) - - -def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, - output_dir, - max_shard_size="5GB", - safe_serialization=False, - tag=None, - exclude_frozen_parameters=False): - """ - Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be - loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. - - Args: - - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) - - ``output_dir``: directory to the pytorch fp32 state_dict output files - - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB - - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). - - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` - - ``exclude_frozen_parameters``: exclude frozen parameters - """ - - # Dependency pre-check - if safe_serialization: - try: - from safetensors.torch import save_file - except ImportError: - print('If you want to use `safe_serialization`, please `pip install safetensors`') - raise - if max_shard_size is not None: - try: - from huggingface_hub import split_torch_state_dict_into_shards - except ImportError: - print('If you want to use `max_shard_size`, please `pip install huggingface_hub`') - raise - - # Convert zero checkpoint to state_dict - state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, - tag, - exclude_frozen_parameters, - lazy_mode=True) - - # Shard the model if it is too big. - weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin" - if max_shard_size is not None: - filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors") - # an memory-efficient approach for sharding - empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True) - state_dict_split = split_torch_state_dict_into_shards(empty_state_dict, - filename_pattern=filename_pattern, - max_shard_size=max_shard_size) - else: - from collections import namedtuple - StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"]) - state_dict_split = StateDictSplit(is_sharded=False, - filename_to_tensors={weights_name: list(state_dict.keys())}) - - # Save the model by shard - os.makedirs(output_dir, exist_ok=True) - filename_to_tensors = state_dict_split.filename_to_tensors.items() - for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"): - shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors} - shard_state_dict = to_torch_tensor(shard_state_dict) - output_path = os.path.join(output_dir, shard_file) - if safe_serialization: - save_file(shard_state_dict, output_path, metadata={"format": "pt"}) - else: - torch.save(shard_state_dict, output_path) - # release the memory of current shard - for tensor_name in list(shard_state_dict.keys()): - del state_dict[tensor_name] - del shard_state_dict[tensor_name] - del shard_state_dict - gc.collect() - - # Save index if sharded - if state_dict_split.is_sharded: - index = { - "metadata": state_dict_split.metadata, - "weight_map": state_dict_split.tensor_to_filename, - } - save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json" - save_index_file = os.path.join(output_dir, save_index_file) - with open(save_index_file, "w", encoding="utf-8") as f: - content = json.dumps(index, indent=2, sort_keys=True) + "\n" - f.write(content) - - -def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): - """ - 1. Put the provided model to cpu - 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` - 3. Load it into the provided model - - Args: - - ``model``: the model object to update - - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) - - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` - - Returns: - - ``model`: modified model - - Make sure you have plenty of CPU memory available before you call this function. If you don't - have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it - conveniently placed for you in the checkpoint folder. - - A typical usage might be :: - - from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint - model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) - # submit to model hub or save the model to share with others - - Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context - of the same application. i.e. you will need to re-initialize the deepspeed engine, since - ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. - - """ - logger.info(f"Extracting fp32 weights") - state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) - - logger.info(f"Overwriting model with fp32 weights") - model = model.cpu() - model.load_state_dict(state_dict, strict=False) - - return model - - -if __name__ == "__main__": - parser = argparse.ArgumentParser() - parser.add_argument("checkpoint_dir", - type=str, - help="path to the desired checkpoint folder, e.g., path/checkpoint-12") - parser.add_argument("output_dir", - type=str, - help="directory to the pytorch fp32 state_dict output files" - "(e.g. path/checkpoint-12-output/)") - parser.add_argument( - "--max_shard_size", - type=str, - default="5GB", - help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size" - "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`" - "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances" - "without CPU OOM issues.") - parser.add_argument( - "--safe_serialization", - default=False, - action='store_true', - help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).") - parser.add_argument("-t", - "--tag", - type=str, - default=None, - help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") - parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters") - parser.add_argument("-d", "--debug", action='store_true', help="enable debug") - args = parser.parse_args() - - debug = args.debug - - convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, - args.output_dir, - max_shard_size=args.max_shard_size, - safe_serialization=args.safe_serialization, - tag=args.tag, - exclude_frozen_parameters=args.exclude_frozen_parameters) diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-52000/README.md b/afford_1b_three_qwen_warmup_0224/checkpoint-52000/README.md deleted file mode 100644 index e5a140c69d5c2887bfe0600718466c0cbcc4f359..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-52000/README.md +++ /dev/null @@ -1,9 +0,0 @@ ---- -tags: -- model_hub_mixin -- pytorch_model_hub_mixin ---- - -This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: -- Library: https://huggingface.co/robotics-diffusion-transformer/rdt-1b -- Docs: [More Information Needed] \ No newline at end of file diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-52000/config.json b/afford_1b_three_qwen_warmup_0224/checkpoint-52000/config.json deleted file mode 100644 index 8fc22a260a06ec3d871d840f4308c0d9c8227c9a..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-52000/config.json +++ /dev/null @@ -1,49 +0,0 @@ -{ - "action_dim": 2, - "ema": { - "inv_gamma": 1.0, - "max_value": 0.9999, - "min_value": 0.0, - "power": 0.75, - "update_after_step": 0 - }, - "img_adaptor": "mlp2x_gelu", - "img_cond_len": 2916, - "img_pos_embed_config": [ - [ - "image", - [ - 2, - 2, - -729 - ] - ] - ], - "img_token_dim": 1152, - "lang_adaptor": "mlp2x_gelu", - "lang_pos_embed_config": [ - [ - "lang", - -1024 - ] - ], - "lang_token_dim": 3584, - "max_lang_cond_len": 1024, - "noise_scheduler": { - "beta_schedule": "squaredcos_cap_v2", - "clip_sample": false, - "num_inference_timesteps": 5, - "num_train_timesteps": 1000, - "prediction_type": "sample", - "type": "ddpm" - }, - "pred_horizon": 4, - "rdt": { - "cond_pos_embed_type": "multimodal", - "depth": 28, - "hidden_size": 2048, - "num_heads": 32 - }, - "state_adaptor": "mlp3x_gelu", - "state_token_dim": 2 -} \ No newline at end of file diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-52000/ema/model.safetensors b/afford_1b_three_qwen_warmup_0224/checkpoint-52000/ema/model.safetensors deleted file mode 100644 index 7de27d0000b798a975cad06c923d29cce4f8ee77..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-52000/ema/model.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:08d498dfe7a9e4c2bd908104feb97ad6eecdee5fad16b8ef86e93930bd37ff25 -size 2437379836 diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-52000/latest b/afford_1b_three_qwen_warmup_0224/checkpoint-52000/latest deleted file mode 100644 index 7b2c8602be034ae63f23b293f8d037fa7afa0c54..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-52000/latest +++ /dev/null @@ -1 +0,0 @@ -pytorch_model \ No newline at end of file diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-52000/pytorch_model.bin b/afford_1b_three_qwen_warmup_0224/checkpoint-52000/pytorch_model.bin deleted file mode 100644 index 712db8f9742f7bc7585e635286ceafd8d7350ef4..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-52000/pytorch_model.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c24469d0ff6386783ab7587e3a71cbc2899c22e0fe3c037acd63262e091e0092 -size 2437429626 diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-52000/pytorch_model/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt b/afford_1b_three_qwen_warmup_0224/checkpoint-52000/pytorch_model/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt deleted file mode 100644 index d5b15f25ad9ec4d15602b828118df27d14d7a62f..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-52000/pytorch_model/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:338a0581bc08e297cd517e8387d152388781dbd0c4bda3d365025b8886bd7d3b -size 3655985904 diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-52000/pytorch_model/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt b/afford_1b_three_qwen_warmup_0224/checkpoint-52000/pytorch_model/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt deleted file mode 100644 index cd0ac2c921c86981a7135fc38e07c7b391fea83c..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-52000/pytorch_model/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:277ae3096300358234f9d1aa6dc63520793b44699df275c367735e45cb83ee1d -size 3655985968 diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-52000/pytorch_model/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt b/afford_1b_three_qwen_warmup_0224/checkpoint-52000/pytorch_model/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt deleted file mode 100644 index 685a4398dbc73b9a2ca94579f4a9207d150650fe..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-52000/pytorch_model/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:78556c75ce1b3bb440b2f0304e4ca230edec42de2172bb2e66708a72a49ff7de -size 3655986224 diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-52000/pytorch_model/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt b/afford_1b_three_qwen_warmup_0224/checkpoint-52000/pytorch_model/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt deleted file mode 100644 index f772e4b89883ac31cb58456f5b00d8be081916f0..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-52000/pytorch_model/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f9304fc11377e759cf026e87f5c68d8244841302e3fb830e146f7180ea389c2a -size 3655986416 diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-52000/pytorch_model/mp_rank_00_model_states.pt b/afford_1b_three_qwen_warmup_0224/checkpoint-52000/pytorch_model/mp_rank_00_model_states.pt deleted file mode 100644 index 9a61154306771b63b2cd3c1682cefbd47c8e8781..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-52000/pytorch_model/mp_rank_00_model_states.pt +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4a8c03ad29c4505c6f21119999f56540447529d6a63214ac0d61c513f793dbf4 -size 2437472876 diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-52000/random_states_0.pkl b/afford_1b_three_qwen_warmup_0224/checkpoint-52000/random_states_0.pkl deleted file mode 100644 index 6c4a999af1526b99f2c5dd096a875fd72a1e42b5..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-52000/random_states_0.pkl +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ef2f29dd1793b6576b459bf7878fd19505ed34de286f592bc58f42112f4b6430 -size 15124 diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-52000/random_states_1.pkl b/afford_1b_three_qwen_warmup_0224/checkpoint-52000/random_states_1.pkl deleted file mode 100644 index 298b14575c2bf44721f157cde48b9dcbc0d0dcf2..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-52000/random_states_1.pkl +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9f65e5af79b17f5b779ac6455004ffdf90a186a96c2d14ff4914694294bbf540 -size 15060 diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-52000/random_states_2.pkl b/afford_1b_three_qwen_warmup_0224/checkpoint-52000/random_states_2.pkl deleted file mode 100644 index ca99ec2d226ce0393994226bd647365c533862da..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-52000/random_states_2.pkl +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f6fc7a8e8b7c389bc4191ab06a9da5b420242e2005b33283f11d7af73372464e -size 15060 diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-52000/random_states_3.pkl b/afford_1b_three_qwen_warmup_0224/checkpoint-52000/random_states_3.pkl deleted file mode 100644 index 814c017ff1dd33c66895a791e5aab16b88a0e3ed..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-52000/random_states_3.pkl +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9061ce264c2321b23cb7e51b3213d7ff7c1b2de011ba7907d69ddce8c7024e8a -size 14996 diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-52000/scheduler.bin b/afford_1b_three_qwen_warmup_0224/checkpoint-52000/scheduler.bin deleted file mode 100644 index 780672b8273c61e1533af50bfbc052c5ba7e1ee2..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-52000/scheduler.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b57331137e811790fcada18a004f8a1270e8f141d3aa67bb29dfb65e4194304f -size 1000 diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-52000/zero_to_fp32.py b/afford_1b_three_qwen_warmup_0224/checkpoint-52000/zero_to_fp32.py deleted file mode 100644 index 0e759146cadd92ddfefab3680146c2bd6a2b5c04..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-52000/zero_to_fp32.py +++ /dev/null @@ -1,760 +0,0 @@ -#!/usr/bin/env python - -# Copyright (c) Microsoft Corporation. -# SPDX-License-Identifier: Apache-2.0 - -# DeepSpeed Team - -# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets -# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in -# the future. Once extracted, the weights don't require DeepSpeed and can be used in any -# application. -# -# example: -# python zero_to_fp32.py . output_dir/ -# or -# python zero_to_fp32.py . output_dir/ --safe_serialization - -import argparse -import torch -import glob -import math -import os -import re -import gc -import json -import numpy as np -from tqdm import tqdm -from collections import OrderedDict -from dataclasses import dataclass - -# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with -# DeepSpeed data structures it has to be available in the current python environment. -from deepspeed.utils import logger -from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, - FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, - FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) - - -@dataclass -class zero_model_state: - buffers: dict() - param_shapes: dict() - shared_params: list - ds_version: int - frozen_param_shapes: dict() - frozen_param_fragments: dict() - - -debug = 0 - -# load to cpu -device = torch.device('cpu') - - -def atoi(text): - return int(text) if text.isdigit() else text - - -def natural_keys(text): - ''' - alist.sort(key=natural_keys) sorts in human order - http://nedbatchelder.com/blog/200712/human_sorting.html - (See Toothy's implementation in the comments) - ''' - return [atoi(c) for c in re.split(r'(\d+)', text)] - - -def get_model_state_file(checkpoint_dir, zero_stage): - if not os.path.isdir(checkpoint_dir): - raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") - - # there should be only one file - if zero_stage <= 2: - file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") - elif zero_stage == 3: - file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") - - if not os.path.exists(file): - raise FileNotFoundError(f"can't find model states file at '{file}'") - - return file - - -def get_checkpoint_files(checkpoint_dir, glob_pattern): - # XXX: need to test that this simple glob rule works for multi-node setup too - ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) - - if len(ckpt_files) == 0: - raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") - - return ckpt_files - - -def get_optim_files(checkpoint_dir): - return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") - - -def get_model_state_files(checkpoint_dir): - return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") - - -def parse_model_states(files): - zero_model_states = [] - for file in files: - state_dict = torch.load(file, map_location=device, weights_only=False) - - if BUFFER_NAMES not in state_dict: - raise ValueError(f"{file} is not a model state checkpoint") - buffer_names = state_dict[BUFFER_NAMES] - if debug: - print("Found buffers:", buffer_names) - - # recover just the buffers while restoring them to fp32 if they were saved in fp16 - buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} - param_shapes = state_dict[PARAM_SHAPES] - - # collect parameters that are included in param_shapes - param_names = [] - for s in param_shapes: - for name in s.keys(): - param_names.append(name) - - # update with frozen parameters - frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) - if frozen_param_shapes is not None: - if debug: - print(f"Found frozen_param_shapes: {frozen_param_shapes}") - param_names += list(frozen_param_shapes.keys()) - - # handle shared params - shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] - - ds_version = state_dict.get(DS_VERSION, None) - - frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) - - z_model_state = zero_model_state(buffers=buffers, - param_shapes=param_shapes, - shared_params=shared_params, - ds_version=ds_version, - frozen_param_shapes=frozen_param_shapes, - frozen_param_fragments=frozen_param_fragments) - zero_model_states.append(z_model_state) - - return zero_model_states - - -def parse_optim_states(files, ds_checkpoint_dir): - total_files = len(files) - state_dicts = [] - for f in tqdm(files, desc='Loading checkpoint shards'): - state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False) - # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights - # and also handle the case where it was already removed by another helper script - state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) - state_dicts.append(state_dict) - - if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: - raise ValueError(f"{files[0]} is not a zero checkpoint") - zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] - world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] - - # For ZeRO-2 each param group can have different partition_count as data parallelism for expert - # parameters can be different from data parallelism for non-expert parameters. So we can just - # use the max of the partition_count to get the dp world_size. - - if type(world_size) is list: - world_size = max(world_size) - - if world_size != total_files: - raise ValueError( - f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " - "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." - ) - - # the groups are named differently in each stage - if zero_stage <= 2: - fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS - elif zero_stage == 3: - fp32_groups_key = FP32_FLAT_GROUPS - else: - raise ValueError(f"unknown zero stage {zero_stage}") - - fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] - return zero_stage, world_size, fp32_flat_groups - - -def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters): - """ - Returns fp32 state_dict reconstructed from ds checkpoint - - Args: - - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) - - """ - print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") - - optim_files = get_optim_files(ds_checkpoint_dir) - zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) - print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") - - model_files = get_model_state_files(ds_checkpoint_dir) - - zero_model_states = parse_model_states(model_files) - print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') - - if zero_stage <= 2: - return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, - exclude_frozen_parameters) - elif zero_stage == 3: - return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, - exclude_frozen_parameters) - - -def _zero2_merge_frozen_params(state_dict, zero_model_states): - if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: - return - - frozen_param_shapes = zero_model_states[0].frozen_param_shapes - frozen_param_fragments = zero_model_states[0].frozen_param_fragments - - if debug: - num_elem = sum(s.numel() for s in frozen_param_shapes.values()) - print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') - - wanted_params = len(frozen_param_shapes) - wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) - avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) - print(f'Frozen params: Have {avail_numel} numels to process.') - print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') - - total_params = 0 - total_numel = 0 - for name, shape in frozen_param_shapes.items(): - total_params += 1 - unpartitioned_numel = shape.numel() - total_numel += unpartitioned_numel - - state_dict[name] = frozen_param_fragments[name] - - if debug: - print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") - - print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") - - -def _has_callable(obj, fn): - attr = getattr(obj, fn, None) - return callable(attr) - - -def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): - param_shapes = zero_model_states[0].param_shapes - - # Reconstruction protocol: - # - # XXX: document this - - if debug: - for i in range(world_size): - for j in range(len(fp32_flat_groups[0])): - print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") - - # XXX: memory usage doubles here (zero2) - num_param_groups = len(fp32_flat_groups[0]) - merged_single_partition_of_fp32_groups = [] - for i in range(num_param_groups): - merged_partitions = [sd[i] for sd in fp32_flat_groups] - full_single_fp32_vector = torch.cat(merged_partitions, 0) - merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) - avail_numel = sum( - [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) - - if debug: - wanted_params = sum([len(shapes) for shapes in param_shapes]) - wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) - # not asserting if there is a mismatch due to possible padding - print(f"Have {avail_numel} numels to process.") - print(f"Need {wanted_numel} numels in {wanted_params} params.") - - # params - # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support - # out-of-core computing solution - total_numel = 0 - total_params = 0 - for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): - offset = 0 - avail_numel = full_single_fp32_vector.numel() - for name, shape in shapes.items(): - - unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape) - total_numel += unpartitioned_numel - total_params += 1 - - if debug: - print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") - state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) - offset += unpartitioned_numel - - # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and - # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex - # paddings performed in the code it's almost impossible to predict the exact numbers w/o the - # live optimizer object, so we are checking that the numbers are within the right range - align_to = 2 * world_size - - def zero2_align(x): - return align_to * math.ceil(x / align_to) - - if debug: - print(f"original offset={offset}, avail_numel={avail_numel}") - - offset = zero2_align(offset) - avail_numel = zero2_align(avail_numel) - - if debug: - print(f"aligned offset={offset}, avail_numel={avail_numel}") - - # Sanity check - if offset != avail_numel: - raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") - - print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") - - -def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, - exclude_frozen_parameters): - state_dict = OrderedDict() - - # buffers - buffers = zero_model_states[0].buffers - state_dict.update(buffers) - if debug: - print(f"added {len(buffers)} buffers") - - if not exclude_frozen_parameters: - _zero2_merge_frozen_params(state_dict, zero_model_states) - - _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) - - # recover shared parameters - for pair in zero_model_states[0].shared_params: - if pair[1] in state_dict: - state_dict[pair[0]] = state_dict[pair[1]] - - return state_dict - - -def zero3_partitioned_param_info(unpartitioned_numel, world_size): - remainder = unpartitioned_numel % world_size - padding_numel = (world_size - remainder) if remainder else 0 - partitioned_numel = math.ceil(unpartitioned_numel / world_size) - return partitioned_numel, padding_numel - - -def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): - if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: - return - - if debug: - for i in range(world_size): - num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) - print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') - - frozen_param_shapes = zero_model_states[0].frozen_param_shapes - wanted_params = len(frozen_param_shapes) - wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) - avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size - print(f'Frozen params: Have {avail_numel} numels to process.') - print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') - - total_params = 0 - total_numel = 0 - for name, shape in zero_model_states[0].frozen_param_shapes.items(): - total_params += 1 - unpartitioned_numel = shape.numel() - total_numel += unpartitioned_numel - - param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) - state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) - - partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) - - if debug: - print( - f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" - ) - - print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") - - -class GatheredTensor: - """ - A pseudo tensor that collects partitioned weights. - It is more memory efficient when there are multiple groups. - """ - - def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape): - self.flat_groups = flat_groups - self.flat_groups_offset = flat_groups_offset - self.offset = offset - self.partitioned_numel = partitioned_numel - self.shape = shape - self.dtype = self.flat_groups[0][0].dtype - - def contiguous(self): - """ - Merge partitioned weights from flat_groups into a single tensor. - """ - end_idx = self.offset + self.partitioned_numel - world_size = len(self.flat_groups) - pad_flat_param_chunks = [] - - for rank_i in range(world_size): - # for each rank, we need to collect weights from related group/groups - flat_groups_at_rank_i = self.flat_groups[rank_i] - start_group_id = None - end_group_id = None - for group_id in range(len(self.flat_groups_offset)): - if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]: - start_group_id = group_id - if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]: - end_group_id = group_id - break - # collect weights from related group/groups - for group_id in range(start_group_id, end_group_id + 1): - flat_tensor = flat_groups_at_rank_i[group_id] - start_offset = self.offset - self.flat_groups_offset[group_id] - end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id] - pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset]) - - # collect weights from all ranks - pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0) - param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous() - return param - - -def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): - param_shapes = zero_model_states[0].param_shapes - avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size - - # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each - # param, re-consolidating each param, while dealing with padding if any - - # merge list of dicts, preserving order - param_shapes = {k: v for d in param_shapes for k, v in d.items()} - - if debug: - for i in range(world_size): - print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") - - wanted_params = len(param_shapes) - wanted_numel = sum(shape.numel() for shape in param_shapes.values()) - # not asserting if there is a mismatch due to possible padding - avail_numel = fp32_flat_groups[0].numel() * world_size - print(f"Trainable params: Have {avail_numel} numels to process.") - print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") - - # params - # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support - # out-of-core computing solution - offset = 0 - total_numel = 0 - total_params = 0 - flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]])) - for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'): - unpartitioned_numel = shape.numel() - total_numel += unpartitioned_numel - total_params += 1 - partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) - - if debug: - print( - f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" - ) - - # memory efficient tensor - tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape) - state_dict[name] = tensor - offset += partitioned_numel - - offset *= world_size - - # Sanity check - if offset != avail_numel: - raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") - - print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") - - -def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, - exclude_frozen_parameters): - state_dict = OrderedDict() - - # buffers - buffers = zero_model_states[0].buffers - state_dict.update(buffers) - if debug: - print(f"added {len(buffers)} buffers") - - if not exclude_frozen_parameters: - _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) - - _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) - - # recover shared parameters - for pair in zero_model_states[0].shared_params: - if pair[1] in state_dict: - state_dict[pair[0]] = state_dict[pair[1]] - - return state_dict - - -def to_torch_tensor(state_dict, return_empty_tensor=False): - """ - Convert state_dict of GatheredTensor to torch tensor - """ - torch_state_dict = {} - converted_tensors = {} - for name, tensor in state_dict.items(): - tensor_id = id(tensor) - if tensor_id in converted_tensors: # shared tensors - shared_tensor = torch_state_dict[converted_tensors[tensor_id]] - torch_state_dict[name] = shared_tensor - else: - converted_tensors[tensor_id] = name - if return_empty_tensor: - torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype) - else: - torch_state_dict[name] = tensor.contiguous() - return torch_state_dict - - -def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, - tag=None, - exclude_frozen_parameters=False, - lazy_mode=False): - """ - Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with - ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example - via a model hub. - - Args: - - ``checkpoint_dir``: path to the desired checkpoint folder - - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` - - ``exclude_frozen_parameters``: exclude frozen parameters - - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient. - Convert the pesduo tensor to torch tensor by ``.contiguous()`` - - Returns: - - pytorch ``state_dict`` - - A typical usage might be :: - - from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint - # do the training and checkpoint saving - state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu - model = model.cpu() # move to cpu - model.load_state_dict(state_dict) - # submit to model hub or save the model to share with others - - In this example the ``model`` will no longer be usable in the deepspeed context of the same - application. i.e. you will need to re-initialize the deepspeed engine, since - ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. - - If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. - - Note: the above usage may not work if your application doesn't have sufficient free CPU memory. - You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with - the checkpoint. Or you can load state_dict in lazy mode :: - - from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint - state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu - for name, lazy_tensor in state_dict.item(): - tensor = lazy_tensor.contiguous() # to cpu - print(name, tensor) - # del tensor to release memory if it no longer in use - """ - if tag is None: - latest_path = os.path.join(checkpoint_dir, 'latest') - if os.path.isfile(latest_path): - with open(latest_path, 'r') as fd: - tag = fd.read().strip() - else: - raise ValueError(f"Unable to find 'latest' file at {latest_path}") - - ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) - - if not os.path.isdir(ds_checkpoint_dir): - raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") - - state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters) - if lazy_mode: - return state_dict - else: - return to_torch_tensor(state_dict) - - -def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, - output_dir, - max_shard_size="5GB", - safe_serialization=False, - tag=None, - exclude_frozen_parameters=False): - """ - Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be - loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. - - Args: - - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) - - ``output_dir``: directory to the pytorch fp32 state_dict output files - - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB - - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). - - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` - - ``exclude_frozen_parameters``: exclude frozen parameters - """ - - # Dependency pre-check - if safe_serialization: - try: - from safetensors.torch import save_file - except ImportError: - print('If you want to use `safe_serialization`, please `pip install safetensors`') - raise - if max_shard_size is not None: - try: - from huggingface_hub import split_torch_state_dict_into_shards - except ImportError: - print('If you want to use `max_shard_size`, please `pip install huggingface_hub`') - raise - - # Convert zero checkpoint to state_dict - state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, - tag, - exclude_frozen_parameters, - lazy_mode=True) - - # Shard the model if it is too big. - weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin" - if max_shard_size is not None: - filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors") - # an memory-efficient approach for sharding - empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True) - state_dict_split = split_torch_state_dict_into_shards(empty_state_dict, - filename_pattern=filename_pattern, - max_shard_size=max_shard_size) - else: - from collections import namedtuple - StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"]) - state_dict_split = StateDictSplit(is_sharded=False, - filename_to_tensors={weights_name: list(state_dict.keys())}) - - # Save the model by shard - os.makedirs(output_dir, exist_ok=True) - filename_to_tensors = state_dict_split.filename_to_tensors.items() - for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"): - shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors} - shard_state_dict = to_torch_tensor(shard_state_dict) - output_path = os.path.join(output_dir, shard_file) - if safe_serialization: - save_file(shard_state_dict, output_path, metadata={"format": "pt"}) - else: - torch.save(shard_state_dict, output_path) - # release the memory of current shard - for tensor_name in list(shard_state_dict.keys()): - del state_dict[tensor_name] - del shard_state_dict[tensor_name] - del shard_state_dict - gc.collect() - - # Save index if sharded - if state_dict_split.is_sharded: - index = { - "metadata": state_dict_split.metadata, - "weight_map": state_dict_split.tensor_to_filename, - } - save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json" - save_index_file = os.path.join(output_dir, save_index_file) - with open(save_index_file, "w", encoding="utf-8") as f: - content = json.dumps(index, indent=2, sort_keys=True) + "\n" - f.write(content) - - -def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): - """ - 1. Put the provided model to cpu - 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` - 3. Load it into the provided model - - Args: - - ``model``: the model object to update - - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) - - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` - - Returns: - - ``model`: modified model - - Make sure you have plenty of CPU memory available before you call this function. If you don't - have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it - conveniently placed for you in the checkpoint folder. - - A typical usage might be :: - - from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint - model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) - # submit to model hub or save the model to share with others - - Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context - of the same application. i.e. you will need to re-initialize the deepspeed engine, since - ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. - - """ - logger.info(f"Extracting fp32 weights") - state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) - - logger.info(f"Overwriting model with fp32 weights") - model = model.cpu() - model.load_state_dict(state_dict, strict=False) - - return model - - -if __name__ == "__main__": - parser = argparse.ArgumentParser() - parser.add_argument("checkpoint_dir", - type=str, - help="path to the desired checkpoint folder, e.g., path/checkpoint-12") - parser.add_argument("output_dir", - type=str, - help="directory to the pytorch fp32 state_dict output files" - "(e.g. path/checkpoint-12-output/)") - parser.add_argument( - "--max_shard_size", - type=str, - default="5GB", - help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size" - "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`" - "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances" - "without CPU OOM issues.") - parser.add_argument( - "--safe_serialization", - default=False, - action='store_true', - help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).") - parser.add_argument("-t", - "--tag", - type=str, - default=None, - help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") - parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters") - parser.add_argument("-d", "--debug", action='store_true', help="enable debug") - args = parser.parse_args() - - debug = args.debug - - convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, - args.output_dir, - max_shard_size=args.max_shard_size, - safe_serialization=args.safe_serialization, - tag=args.tag, - exclude_frozen_parameters=args.exclude_frozen_parameters) diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-62000/README.md b/afford_1b_three_qwen_warmup_0224/checkpoint-62000/README.md deleted file mode 100644 index e5a140c69d5c2887bfe0600718466c0cbcc4f359..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-62000/README.md +++ /dev/null @@ -1,9 +0,0 @@ ---- -tags: -- model_hub_mixin -- pytorch_model_hub_mixin ---- - -This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: -- Library: https://huggingface.co/robotics-diffusion-transformer/rdt-1b -- Docs: [More Information Needed] \ No newline at end of file diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-62000/config.json b/afford_1b_three_qwen_warmup_0224/checkpoint-62000/config.json deleted file mode 100644 index 8fc22a260a06ec3d871d840f4308c0d9c8227c9a..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-62000/config.json +++ /dev/null @@ -1,49 +0,0 @@ -{ - "action_dim": 2, - "ema": { - "inv_gamma": 1.0, - "max_value": 0.9999, - "min_value": 0.0, - "power": 0.75, - "update_after_step": 0 - }, - "img_adaptor": "mlp2x_gelu", - "img_cond_len": 2916, - "img_pos_embed_config": [ - [ - "image", - [ - 2, - 2, - -729 - ] - ] - ], - "img_token_dim": 1152, - "lang_adaptor": "mlp2x_gelu", - "lang_pos_embed_config": [ - [ - "lang", - -1024 - ] - ], - "lang_token_dim": 3584, - "max_lang_cond_len": 1024, - "noise_scheduler": { - "beta_schedule": "squaredcos_cap_v2", - "clip_sample": false, - "num_inference_timesteps": 5, - "num_train_timesteps": 1000, - "prediction_type": "sample", - "type": "ddpm" - }, - "pred_horizon": 4, - "rdt": { - "cond_pos_embed_type": "multimodal", - "depth": 28, - "hidden_size": 2048, - "num_heads": 32 - }, - "state_adaptor": "mlp3x_gelu", - "state_token_dim": 2 -} \ No newline at end of file diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-62000/ema/model.safetensors b/afford_1b_three_qwen_warmup_0224/checkpoint-62000/ema/model.safetensors deleted file mode 100644 index 9eec2292638ff2954f7bcd39300f36c0864de661..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-62000/ema/model.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a978e3980816a29500bb05a1c0aec9a0a2ec5989127f69ca4ded97dd88923d59 -size 2437379836 diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-62000/latest b/afford_1b_three_qwen_warmup_0224/checkpoint-62000/latest deleted file mode 100644 index 7b2c8602be034ae63f23b293f8d037fa7afa0c54..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-62000/latest +++ /dev/null @@ -1 +0,0 @@ -pytorch_model \ No newline at end of file diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-62000/pytorch_model.bin b/afford_1b_three_qwen_warmup_0224/checkpoint-62000/pytorch_model.bin deleted file mode 100644 index 06a10258ea52db561c6c96521b9880cbc09bcb35..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-62000/pytorch_model.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6b5931885ac8c0a199541805a6b84ce008c033e8118c476602967db3c0e88c1b -size 2437429626 diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-62000/pytorch_model/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt b/afford_1b_three_qwen_warmup_0224/checkpoint-62000/pytorch_model/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt deleted file mode 100644 index 2487e6c60bb0a6541d9d4124276c67d1fd79187f..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-62000/pytorch_model/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fc85eafd69930942941839f489d22c67abf3492197606a694fdb4240bb0d2718 -size 3655985904 diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-62000/pytorch_model/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt b/afford_1b_three_qwen_warmup_0224/checkpoint-62000/pytorch_model/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt deleted file mode 100644 index 6826184b27c93d37cbc37d63e932c8c52f15c8a8..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-62000/pytorch_model/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:29620f7766668e1a73418bc6decf419251f7713cd7a3f171866fe1c2de46f605 -size 3655985968 diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-62000/pytorch_model/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt b/afford_1b_three_qwen_warmup_0224/checkpoint-62000/pytorch_model/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt deleted file mode 100644 index 0b96725fd96cd837289062686ca14a2bc7d7505e..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-62000/pytorch_model/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:afd7f7a2d09e5a1976979f1ca42636ac5546779c66e91cdd71768a9383df01ce -size 3655986224 diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-62000/pytorch_model/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt b/afford_1b_three_qwen_warmup_0224/checkpoint-62000/pytorch_model/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt deleted file mode 100644 index bd899e14a40fd7530a75349614ceb16df7201e17..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-62000/pytorch_model/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:53f7980e02e218458530d6c1148b428c283bd3211a880e6760cf1a511ec1e34b -size 3655986416 diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-62000/pytorch_model/mp_rank_00_model_states.pt b/afford_1b_three_qwen_warmup_0224/checkpoint-62000/pytorch_model/mp_rank_00_model_states.pt deleted file mode 100644 index ce714a0ff35bb34d82e575aec57beb7e63c86045..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-62000/pytorch_model/mp_rank_00_model_states.pt +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7ac51f57191386b8d711d90426fc1dbe1cc16f30fcab9dbcf6584572edf7b172 -size 2437472876 diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-62000/random_states_0.pkl b/afford_1b_three_qwen_warmup_0224/checkpoint-62000/random_states_0.pkl deleted file mode 100644 index 84f3ab83d22ccd20e4243bd99669d4f0426834e0..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-62000/random_states_0.pkl +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:500fa620859b5201ef56598720aec3bbe9da940382549361d4b5170df3620413 -size 15124 diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-62000/random_states_1.pkl b/afford_1b_three_qwen_warmup_0224/checkpoint-62000/random_states_1.pkl deleted file mode 100644 index 8c508e1876be141e5873447b864e0e4d508700ec..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-62000/random_states_1.pkl +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4b8f5bdacfef43f1b5236db656871d367ecd4fe809c84d32f308ef36ba24ff52 -size 15060 diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-62000/random_states_2.pkl b/afford_1b_three_qwen_warmup_0224/checkpoint-62000/random_states_2.pkl deleted file mode 100644 index ec8954bcba83697922d1368ad06048fbf1ecfe8d..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-62000/random_states_2.pkl +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b0d2902db02c991b96f78373a2423eba64c274f4adcce6a120e6dc492fcb6920 -size 15060 diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-62000/random_states_3.pkl b/afford_1b_three_qwen_warmup_0224/checkpoint-62000/random_states_3.pkl deleted file mode 100644 index 515bc4b602beb86f12709812b817cf2c74e9d5e8..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-62000/random_states_3.pkl +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:45f08700e6490ca6b89fca3f97ccec27f8c68c958d3b175013f6e9d1c307cfc4 -size 14996 diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-62000/scheduler.bin b/afford_1b_three_qwen_warmup_0224/checkpoint-62000/scheduler.bin deleted file mode 100644 index 747bbe3e21227a3093c7ef18a1de21ceee82da55..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-62000/scheduler.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7f61c832a82b62bbf955b403d9dc5dd199f8e544717776463dc870931eb4312d -size 1000 diff --git a/afford_1b_three_qwen_warmup_0224/checkpoint-62000/zero_to_fp32.py b/afford_1b_three_qwen_warmup_0224/checkpoint-62000/zero_to_fp32.py deleted file mode 100644 index 0e759146cadd92ddfefab3680146c2bd6a2b5c04..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/checkpoint-62000/zero_to_fp32.py +++ /dev/null @@ -1,760 +0,0 @@ -#!/usr/bin/env python - -# Copyright (c) Microsoft Corporation. -# SPDX-License-Identifier: Apache-2.0 - -# DeepSpeed Team - -# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets -# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in -# the future. Once extracted, the weights don't require DeepSpeed and can be used in any -# application. -# -# example: -# python zero_to_fp32.py . output_dir/ -# or -# python zero_to_fp32.py . output_dir/ --safe_serialization - -import argparse -import torch -import glob -import math -import os -import re -import gc -import json -import numpy as np -from tqdm import tqdm -from collections import OrderedDict -from dataclasses import dataclass - -# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with -# DeepSpeed data structures it has to be available in the current python environment. -from deepspeed.utils import logger -from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, - FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, - FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) - - -@dataclass -class zero_model_state: - buffers: dict() - param_shapes: dict() - shared_params: list - ds_version: int - frozen_param_shapes: dict() - frozen_param_fragments: dict() - - -debug = 0 - -# load to cpu -device = torch.device('cpu') - - -def atoi(text): - return int(text) if text.isdigit() else text - - -def natural_keys(text): - ''' - alist.sort(key=natural_keys) sorts in human order - http://nedbatchelder.com/blog/200712/human_sorting.html - (See Toothy's implementation in the comments) - ''' - return [atoi(c) for c in re.split(r'(\d+)', text)] - - -def get_model_state_file(checkpoint_dir, zero_stage): - if not os.path.isdir(checkpoint_dir): - raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") - - # there should be only one file - if zero_stage <= 2: - file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") - elif zero_stage == 3: - file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") - - if not os.path.exists(file): - raise FileNotFoundError(f"can't find model states file at '{file}'") - - return file - - -def get_checkpoint_files(checkpoint_dir, glob_pattern): - # XXX: need to test that this simple glob rule works for multi-node setup too - ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) - - if len(ckpt_files) == 0: - raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") - - return ckpt_files - - -def get_optim_files(checkpoint_dir): - return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") - - -def get_model_state_files(checkpoint_dir): - return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") - - -def parse_model_states(files): - zero_model_states = [] - for file in files: - state_dict = torch.load(file, map_location=device, weights_only=False) - - if BUFFER_NAMES not in state_dict: - raise ValueError(f"{file} is not a model state checkpoint") - buffer_names = state_dict[BUFFER_NAMES] - if debug: - print("Found buffers:", buffer_names) - - # recover just the buffers while restoring them to fp32 if they were saved in fp16 - buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} - param_shapes = state_dict[PARAM_SHAPES] - - # collect parameters that are included in param_shapes - param_names = [] - for s in param_shapes: - for name in s.keys(): - param_names.append(name) - - # update with frozen parameters - frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) - if frozen_param_shapes is not None: - if debug: - print(f"Found frozen_param_shapes: {frozen_param_shapes}") - param_names += list(frozen_param_shapes.keys()) - - # handle shared params - shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] - - ds_version = state_dict.get(DS_VERSION, None) - - frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) - - z_model_state = zero_model_state(buffers=buffers, - param_shapes=param_shapes, - shared_params=shared_params, - ds_version=ds_version, - frozen_param_shapes=frozen_param_shapes, - frozen_param_fragments=frozen_param_fragments) - zero_model_states.append(z_model_state) - - return zero_model_states - - -def parse_optim_states(files, ds_checkpoint_dir): - total_files = len(files) - state_dicts = [] - for f in tqdm(files, desc='Loading checkpoint shards'): - state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False) - # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights - # and also handle the case where it was already removed by another helper script - state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) - state_dicts.append(state_dict) - - if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: - raise ValueError(f"{files[0]} is not a zero checkpoint") - zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] - world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] - - # For ZeRO-2 each param group can have different partition_count as data parallelism for expert - # parameters can be different from data parallelism for non-expert parameters. So we can just - # use the max of the partition_count to get the dp world_size. - - if type(world_size) is list: - world_size = max(world_size) - - if world_size != total_files: - raise ValueError( - f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " - "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." - ) - - # the groups are named differently in each stage - if zero_stage <= 2: - fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS - elif zero_stage == 3: - fp32_groups_key = FP32_FLAT_GROUPS - else: - raise ValueError(f"unknown zero stage {zero_stage}") - - fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] - return zero_stage, world_size, fp32_flat_groups - - -def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters): - """ - Returns fp32 state_dict reconstructed from ds checkpoint - - Args: - - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) - - """ - print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") - - optim_files = get_optim_files(ds_checkpoint_dir) - zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) - print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") - - model_files = get_model_state_files(ds_checkpoint_dir) - - zero_model_states = parse_model_states(model_files) - print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') - - if zero_stage <= 2: - return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, - exclude_frozen_parameters) - elif zero_stage == 3: - return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, - exclude_frozen_parameters) - - -def _zero2_merge_frozen_params(state_dict, zero_model_states): - if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: - return - - frozen_param_shapes = zero_model_states[0].frozen_param_shapes - frozen_param_fragments = zero_model_states[0].frozen_param_fragments - - if debug: - num_elem = sum(s.numel() for s in frozen_param_shapes.values()) - print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') - - wanted_params = len(frozen_param_shapes) - wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) - avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) - print(f'Frozen params: Have {avail_numel} numels to process.') - print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') - - total_params = 0 - total_numel = 0 - for name, shape in frozen_param_shapes.items(): - total_params += 1 - unpartitioned_numel = shape.numel() - total_numel += unpartitioned_numel - - state_dict[name] = frozen_param_fragments[name] - - if debug: - print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") - - print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") - - -def _has_callable(obj, fn): - attr = getattr(obj, fn, None) - return callable(attr) - - -def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): - param_shapes = zero_model_states[0].param_shapes - - # Reconstruction protocol: - # - # XXX: document this - - if debug: - for i in range(world_size): - for j in range(len(fp32_flat_groups[0])): - print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") - - # XXX: memory usage doubles here (zero2) - num_param_groups = len(fp32_flat_groups[0]) - merged_single_partition_of_fp32_groups = [] - for i in range(num_param_groups): - merged_partitions = [sd[i] for sd in fp32_flat_groups] - full_single_fp32_vector = torch.cat(merged_partitions, 0) - merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) - avail_numel = sum( - [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) - - if debug: - wanted_params = sum([len(shapes) for shapes in param_shapes]) - wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) - # not asserting if there is a mismatch due to possible padding - print(f"Have {avail_numel} numels to process.") - print(f"Need {wanted_numel} numels in {wanted_params} params.") - - # params - # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support - # out-of-core computing solution - total_numel = 0 - total_params = 0 - for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): - offset = 0 - avail_numel = full_single_fp32_vector.numel() - for name, shape in shapes.items(): - - unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape) - total_numel += unpartitioned_numel - total_params += 1 - - if debug: - print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") - state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) - offset += unpartitioned_numel - - # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and - # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex - # paddings performed in the code it's almost impossible to predict the exact numbers w/o the - # live optimizer object, so we are checking that the numbers are within the right range - align_to = 2 * world_size - - def zero2_align(x): - return align_to * math.ceil(x / align_to) - - if debug: - print(f"original offset={offset}, avail_numel={avail_numel}") - - offset = zero2_align(offset) - avail_numel = zero2_align(avail_numel) - - if debug: - print(f"aligned offset={offset}, avail_numel={avail_numel}") - - # Sanity check - if offset != avail_numel: - raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") - - print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") - - -def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, - exclude_frozen_parameters): - state_dict = OrderedDict() - - # buffers - buffers = zero_model_states[0].buffers - state_dict.update(buffers) - if debug: - print(f"added {len(buffers)} buffers") - - if not exclude_frozen_parameters: - _zero2_merge_frozen_params(state_dict, zero_model_states) - - _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) - - # recover shared parameters - for pair in zero_model_states[0].shared_params: - if pair[1] in state_dict: - state_dict[pair[0]] = state_dict[pair[1]] - - return state_dict - - -def zero3_partitioned_param_info(unpartitioned_numel, world_size): - remainder = unpartitioned_numel % world_size - padding_numel = (world_size - remainder) if remainder else 0 - partitioned_numel = math.ceil(unpartitioned_numel / world_size) - return partitioned_numel, padding_numel - - -def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): - if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: - return - - if debug: - for i in range(world_size): - num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) - print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') - - frozen_param_shapes = zero_model_states[0].frozen_param_shapes - wanted_params = len(frozen_param_shapes) - wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) - avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size - print(f'Frozen params: Have {avail_numel} numels to process.') - print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') - - total_params = 0 - total_numel = 0 - for name, shape in zero_model_states[0].frozen_param_shapes.items(): - total_params += 1 - unpartitioned_numel = shape.numel() - total_numel += unpartitioned_numel - - param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) - state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) - - partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) - - if debug: - print( - f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" - ) - - print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") - - -class GatheredTensor: - """ - A pseudo tensor that collects partitioned weights. - It is more memory efficient when there are multiple groups. - """ - - def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape): - self.flat_groups = flat_groups - self.flat_groups_offset = flat_groups_offset - self.offset = offset - self.partitioned_numel = partitioned_numel - self.shape = shape - self.dtype = self.flat_groups[0][0].dtype - - def contiguous(self): - """ - Merge partitioned weights from flat_groups into a single tensor. - """ - end_idx = self.offset + self.partitioned_numel - world_size = len(self.flat_groups) - pad_flat_param_chunks = [] - - for rank_i in range(world_size): - # for each rank, we need to collect weights from related group/groups - flat_groups_at_rank_i = self.flat_groups[rank_i] - start_group_id = None - end_group_id = None - for group_id in range(len(self.flat_groups_offset)): - if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]: - start_group_id = group_id - if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]: - end_group_id = group_id - break - # collect weights from related group/groups - for group_id in range(start_group_id, end_group_id + 1): - flat_tensor = flat_groups_at_rank_i[group_id] - start_offset = self.offset - self.flat_groups_offset[group_id] - end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id] - pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset]) - - # collect weights from all ranks - pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0) - param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous() - return param - - -def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): - param_shapes = zero_model_states[0].param_shapes - avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size - - # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each - # param, re-consolidating each param, while dealing with padding if any - - # merge list of dicts, preserving order - param_shapes = {k: v for d in param_shapes for k, v in d.items()} - - if debug: - for i in range(world_size): - print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") - - wanted_params = len(param_shapes) - wanted_numel = sum(shape.numel() for shape in param_shapes.values()) - # not asserting if there is a mismatch due to possible padding - avail_numel = fp32_flat_groups[0].numel() * world_size - print(f"Trainable params: Have {avail_numel} numels to process.") - print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") - - # params - # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support - # out-of-core computing solution - offset = 0 - total_numel = 0 - total_params = 0 - flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]])) - for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'): - unpartitioned_numel = shape.numel() - total_numel += unpartitioned_numel - total_params += 1 - partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) - - if debug: - print( - f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" - ) - - # memory efficient tensor - tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape) - state_dict[name] = tensor - offset += partitioned_numel - - offset *= world_size - - # Sanity check - if offset != avail_numel: - raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") - - print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") - - -def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, - exclude_frozen_parameters): - state_dict = OrderedDict() - - # buffers - buffers = zero_model_states[0].buffers - state_dict.update(buffers) - if debug: - print(f"added {len(buffers)} buffers") - - if not exclude_frozen_parameters: - _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) - - _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) - - # recover shared parameters - for pair in zero_model_states[0].shared_params: - if pair[1] in state_dict: - state_dict[pair[0]] = state_dict[pair[1]] - - return state_dict - - -def to_torch_tensor(state_dict, return_empty_tensor=False): - """ - Convert state_dict of GatheredTensor to torch tensor - """ - torch_state_dict = {} - converted_tensors = {} - for name, tensor in state_dict.items(): - tensor_id = id(tensor) - if tensor_id in converted_tensors: # shared tensors - shared_tensor = torch_state_dict[converted_tensors[tensor_id]] - torch_state_dict[name] = shared_tensor - else: - converted_tensors[tensor_id] = name - if return_empty_tensor: - torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype) - else: - torch_state_dict[name] = tensor.contiguous() - return torch_state_dict - - -def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, - tag=None, - exclude_frozen_parameters=False, - lazy_mode=False): - """ - Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with - ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example - via a model hub. - - Args: - - ``checkpoint_dir``: path to the desired checkpoint folder - - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` - - ``exclude_frozen_parameters``: exclude frozen parameters - - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient. - Convert the pesduo tensor to torch tensor by ``.contiguous()`` - - Returns: - - pytorch ``state_dict`` - - A typical usage might be :: - - from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint - # do the training and checkpoint saving - state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu - model = model.cpu() # move to cpu - model.load_state_dict(state_dict) - # submit to model hub or save the model to share with others - - In this example the ``model`` will no longer be usable in the deepspeed context of the same - application. i.e. you will need to re-initialize the deepspeed engine, since - ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. - - If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. - - Note: the above usage may not work if your application doesn't have sufficient free CPU memory. - You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with - the checkpoint. Or you can load state_dict in lazy mode :: - - from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint - state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu - for name, lazy_tensor in state_dict.item(): - tensor = lazy_tensor.contiguous() # to cpu - print(name, tensor) - # del tensor to release memory if it no longer in use - """ - if tag is None: - latest_path = os.path.join(checkpoint_dir, 'latest') - if os.path.isfile(latest_path): - with open(latest_path, 'r') as fd: - tag = fd.read().strip() - else: - raise ValueError(f"Unable to find 'latest' file at {latest_path}") - - ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) - - if not os.path.isdir(ds_checkpoint_dir): - raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") - - state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters) - if lazy_mode: - return state_dict - else: - return to_torch_tensor(state_dict) - - -def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, - output_dir, - max_shard_size="5GB", - safe_serialization=False, - tag=None, - exclude_frozen_parameters=False): - """ - Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be - loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. - - Args: - - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) - - ``output_dir``: directory to the pytorch fp32 state_dict output files - - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB - - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). - - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` - - ``exclude_frozen_parameters``: exclude frozen parameters - """ - - # Dependency pre-check - if safe_serialization: - try: - from safetensors.torch import save_file - except ImportError: - print('If you want to use `safe_serialization`, please `pip install safetensors`') - raise - if max_shard_size is not None: - try: - from huggingface_hub import split_torch_state_dict_into_shards - except ImportError: - print('If you want to use `max_shard_size`, please `pip install huggingface_hub`') - raise - - # Convert zero checkpoint to state_dict - state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, - tag, - exclude_frozen_parameters, - lazy_mode=True) - - # Shard the model if it is too big. - weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin" - if max_shard_size is not None: - filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors") - # an memory-efficient approach for sharding - empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True) - state_dict_split = split_torch_state_dict_into_shards(empty_state_dict, - filename_pattern=filename_pattern, - max_shard_size=max_shard_size) - else: - from collections import namedtuple - StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"]) - state_dict_split = StateDictSplit(is_sharded=False, - filename_to_tensors={weights_name: list(state_dict.keys())}) - - # Save the model by shard - os.makedirs(output_dir, exist_ok=True) - filename_to_tensors = state_dict_split.filename_to_tensors.items() - for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"): - shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors} - shard_state_dict = to_torch_tensor(shard_state_dict) - output_path = os.path.join(output_dir, shard_file) - if safe_serialization: - save_file(shard_state_dict, output_path, metadata={"format": "pt"}) - else: - torch.save(shard_state_dict, output_path) - # release the memory of current shard - for tensor_name in list(shard_state_dict.keys()): - del state_dict[tensor_name] - del shard_state_dict[tensor_name] - del shard_state_dict - gc.collect() - - # Save index if sharded - if state_dict_split.is_sharded: - index = { - "metadata": state_dict_split.metadata, - "weight_map": state_dict_split.tensor_to_filename, - } - save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json" - save_index_file = os.path.join(output_dir, save_index_file) - with open(save_index_file, "w", encoding="utf-8") as f: - content = json.dumps(index, indent=2, sort_keys=True) + "\n" - f.write(content) - - -def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): - """ - 1. Put the provided model to cpu - 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` - 3. Load it into the provided model - - Args: - - ``model``: the model object to update - - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) - - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` - - Returns: - - ``model`: modified model - - Make sure you have plenty of CPU memory available before you call this function. If you don't - have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it - conveniently placed for you in the checkpoint folder. - - A typical usage might be :: - - from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint - model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) - # submit to model hub or save the model to share with others - - Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context - of the same application. i.e. you will need to re-initialize the deepspeed engine, since - ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. - - """ - logger.info(f"Extracting fp32 weights") - state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) - - logger.info(f"Overwriting model with fp32 weights") - model = model.cpu() - model.load_state_dict(state_dict, strict=False) - - return model - - -if __name__ == "__main__": - parser = argparse.ArgumentParser() - parser.add_argument("checkpoint_dir", - type=str, - help="path to the desired checkpoint folder, e.g., path/checkpoint-12") - parser.add_argument("output_dir", - type=str, - help="directory to the pytorch fp32 state_dict output files" - "(e.g. path/checkpoint-12-output/)") - parser.add_argument( - "--max_shard_size", - type=str, - default="5GB", - help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size" - "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`" - "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances" - "without CPU OOM issues.") - parser.add_argument( - "--safe_serialization", - default=False, - action='store_true', - help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).") - parser.add_argument("-t", - "--tag", - type=str, - default=None, - help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") - parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters") - parser.add_argument("-d", "--debug", action='store_true', help="enable debug") - args = parser.parse_args() - - debug = args.debug - - convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, - args.output_dir, - max_shard_size=args.max_shard_size, - safe_serialization=args.safe_serialization, - tag=args.tag, - exclude_frozen_parameters=args.exclude_frozen_parameters) diff --git a/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/1740318351.2888598/events.out.tfevents.1740318351.computer4.3891237.1 b/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/1740318351.2888598/events.out.tfevents.1740318351.computer4.3891237.1 deleted file mode 100644 index 82d817369e0be6c6851806f239c88476db29df85..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/1740318351.2888598/events.out.tfevents.1740318351.computer4.3891237.1 +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1e62dbd54cebc97a668e521f72153ee350e3e7fa0cd60993d52cfdb708fda489 -size 2639 diff --git a/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/1740318351.2916248/hparams.yml b/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/1740318351.2916248/hparams.yml deleted file mode 100644 index bdb968d0915a35144f1078be336d48e819d52971..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/1740318351.2916248/hparams.yml +++ /dev/null @@ -1,48 +0,0 @@ -adam_beta1: 0.9 -adam_beta2: 0.999 -adam_epsilon: 1.0e-08 -adam_weight_decay: 0.01 -allow_tf32: false -alpha: 0.9 -cam_ext_mask_prob: -1.0 -checkpointing_period: 2000 -checkpoints_total_limit: 15 -cond_mask_prob: 0.1 -config_path: configs/base.yaml -dataloader_num_workers: 8 -dataset_type: finetune -deepspeed: ./configs/zero2.json -gradient_accumulation_steps: 1 -gradient_checkpointing: false -hub_model_id: null -hub_token: null -image_aug: true -learning_rate: 0.0001 -load_from_hdf5: true -local_rank: 0 -logging_dir: logs -lr_num_cycles: 1 -lr_power: 1.0 -lr_scheduler: constant_with_warmup -lr_warmup_steps: 500 -max_grad_norm: 1.0 -max_train_steps: 160000 -mixed_precision: bf16 -num_sample_batches: 2 -num_train_epochs: 2667 -output_dir: /mnt/data/xurongtao/checkpoints/afford_1b_three_qwen_warmup_0224 -precomp_lang_embed: false -pretrained_model_name_or_path: null -pretrained_text_encoder_name_or_path: google/t5-v1_1-xxl -pretrained_vision_encoder_name_or_path: google/siglip-so400m-patch14-384 -push_to_hub: false -report_to: tensorboard -resume_from_checkpoint: null -sample_batch_size: 35 -sample_period: 150 -scale_lr: false -seed: null -set_grads_to_none: false -state_noise_snr: 40.0 -train_batch_size: 40 -use_8bit_adam: false diff --git a/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/1740325720.2930408/events.out.tfevents.1740325720.computer4.4166006.1 b/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/1740325720.2930408/events.out.tfevents.1740325720.computer4.4166006.1 deleted file mode 100644 index 33f182f7b2ba44a7eb5812e38099a40684e27280..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/1740325720.2930408/events.out.tfevents.1740325720.computer4.4166006.1 +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ae3200dc2b6dcc5077635014d20145864202625dd4546d6800fd730df4eb8a78 -size 2712 diff --git a/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/1740325720.2956624/hparams.yml b/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/1740325720.2956624/hparams.yml deleted file mode 100644 index 07e5537b9f6c7c431e6b1f9d528af3b1f920af2a..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/1740325720.2956624/hparams.yml +++ /dev/null @@ -1,48 +0,0 @@ -adam_beta1: 0.9 -adam_beta2: 0.999 -adam_epsilon: 1.0e-08 -adam_weight_decay: 0.01 -allow_tf32: false -alpha: 0.9 -cam_ext_mask_prob: -1.0 -checkpointing_period: 2000 -checkpoints_total_limit: 15 -cond_mask_prob: 0.1 -config_path: configs/base.yaml -dataloader_num_workers: 8 -dataset_type: finetune -deepspeed: ./configs/zero2.json -gradient_accumulation_steps: 1 -gradient_checkpointing: false -hub_model_id: null -hub_token: null -image_aug: true -learning_rate: 0.0001 -load_from_hdf5: true -local_rank: 0 -logging_dir: logs -lr_num_cycles: 1 -lr_power: 1.0 -lr_scheduler: constant_with_warmup -lr_warmup_steps: 500 -max_grad_norm: 1.0 -max_train_steps: 160000 -mixed_precision: bf16 -num_sample_batches: 2 -num_train_epochs: 2963 -output_dir: /mnt/data/xurongtao/checkpoints/afford_1b_three_qwen_warmup_0224 -precomp_lang_embed: false -pretrained_model_name_or_path: null -pretrained_text_encoder_name_or_path: google/t5-v1_1-xxl -pretrained_vision_encoder_name_or_path: google/siglip-so400m-patch14-384 -push_to_hub: false -report_to: tensorboard -resume_from_checkpoint: checkpoint-4000 -sample_batch_size: 35 -sample_period: 150 -scale_lr: false -seed: null -set_grads_to_none: false -state_noise_snr: 40.0 -train_batch_size: 45 -use_8bit_adam: false diff --git a/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/1740325876.402376/events.out.tfevents.1740325876.computer4.4187731.1 b/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/1740325876.402376/events.out.tfevents.1740325876.computer4.4187731.1 deleted file mode 100644 index d11afd0769a9cd04948e886d53784b23c3074e14..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/1740325876.402376/events.out.tfevents.1740325876.computer4.4187731.1 +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:77879855c7908d06c1061263934696b55cb913972dae6f762fa44b171464307f -size 2712 diff --git a/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/1740325876.404853/hparams.yml b/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/1740325876.404853/hparams.yml deleted file mode 100644 index d408746c3f4d3dc1d5f7c052bd4594fdb438ead0..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/1740325876.404853/hparams.yml +++ /dev/null @@ -1,48 +0,0 @@ -adam_beta1: 0.9 -adam_beta2: 0.999 -adam_epsilon: 1.0e-08 -adam_weight_decay: 0.01 -allow_tf32: false -alpha: 0.9 -cam_ext_mask_prob: -1.0 -checkpointing_period: 2000 -checkpoints_total_limit: 15 -cond_mask_prob: 0.1 -config_path: configs/base.yaml -dataloader_num_workers: 8 -dataset_type: finetune -deepspeed: ./configs/zero2.json -gradient_accumulation_steps: 1 -gradient_checkpointing: false -hub_model_id: null -hub_token: null -image_aug: true -learning_rate: 0.0001 -load_from_hdf5: true -local_rank: 0 -logging_dir: logs -lr_num_cycles: 1 -lr_power: 1.0 -lr_scheduler: constant_with_warmup -lr_warmup_steps: 500 -max_grad_norm: 1.0 -max_train_steps: 160000 -mixed_precision: bf16 -num_sample_batches: 2 -num_train_epochs: 3334 -output_dir: /mnt/data/xurongtao/checkpoints/afford_1b_three_qwen_warmup_0224 -precomp_lang_embed: false -pretrained_model_name_or_path: null -pretrained_text_encoder_name_or_path: google/t5-v1_1-xxl -pretrained_vision_encoder_name_or_path: google/siglip-so400m-patch14-384 -push_to_hub: false -report_to: tensorboard -resume_from_checkpoint: checkpoint-4000 -sample_batch_size: 35 -sample_period: 150 -scale_lr: false -seed: null -set_grads_to_none: false -state_noise_snr: 40.0 -train_batch_size: 50 -use_8bit_adam: false diff --git a/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/1740415627.6681213/events.out.tfevents.1740415627.computer4.3743808.1 b/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/1740415627.6681213/events.out.tfevents.1740415627.computer4.3743808.1 deleted file mode 100644 index 485e001a5c1a758efee10c6936e3c1ce9792df3e..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/1740415627.6681213/events.out.tfevents.1740415627.computer4.3743808.1 +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c59409cd63126cedc4f023d249215254828e3abd09061c1215164a8d5d93f883 -size 2713 diff --git a/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/1740415627.6703348/hparams.yml b/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/1740415627.6703348/hparams.yml deleted file mode 100644 index 06d3601b1a3a7c6382ed3b64cbbfd40c6c008639..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/1740415627.6703348/hparams.yml +++ /dev/null @@ -1,48 +0,0 @@ -adam_beta1: 0.9 -adam_beta2: 0.999 -adam_epsilon: 1.0e-08 -adam_weight_decay: 0.01 -allow_tf32: false -alpha: 0.9 -cam_ext_mask_prob: -1.0 -checkpointing_period: 2000 -checkpoints_total_limit: 15 -cond_mask_prob: 0.1 -config_path: configs/base.yaml -dataloader_num_workers: 8 -dataset_type: finetune -deepspeed: ./configs/zero2.json -gradient_accumulation_steps: 1 -gradient_checkpointing: false -hub_model_id: null -hub_token: null -image_aug: true -learning_rate: 0.0001 -load_from_hdf5: true -local_rank: 0 -logging_dir: logs -lr_num_cycles: 1 -lr_power: 1.0 -lr_scheduler: constant_with_warmup -lr_warmup_steps: 500 -max_grad_norm: 1.0 -max_train_steps: 160000 -mixed_precision: bf16 -num_sample_batches: 2 -num_train_epochs: 3334 -output_dir: /mnt/data/xurongtao/checkpoints/afford_1b_three_qwen_warmup_0224 -precomp_lang_embed: false -pretrained_model_name_or_path: null -pretrained_text_encoder_name_or_path: google/t5-v1_1-xxl -pretrained_vision_encoder_name_or_path: google/siglip-so400m-patch14-384 -push_to_hub: false -report_to: tensorboard -resume_from_checkpoint: checkpoint-40000 -sample_batch_size: 35 -sample_period: 150 -scale_lr: false -seed: null -set_grads_to_none: false -state_noise_snr: 40.0 -train_batch_size: 50 -use_8bit_adam: false diff --git a/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/1740479243.5471084/events.out.tfevents.1740479243.computer4.3883696.1 b/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/1740479243.5471084/events.out.tfevents.1740479243.computer4.3883696.1 deleted file mode 100644 index 33f80c588c4d1137f2b7a9df5eae79abfaa9e5ae..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/1740479243.5471084/events.out.tfevents.1740479243.computer4.3883696.1 +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:df8d2cf46ec79ad610a5bfd50fd2943b51947ad56657cda8ccd6e66da62a4cf1 -size 2713 diff --git a/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/1740479243.5496354/hparams.yml b/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/1740479243.5496354/hparams.yml deleted file mode 100644 index 6a8bfd12fa1df2e9f116d76bf395b65118fe8c46..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/1740479243.5496354/hparams.yml +++ /dev/null @@ -1,48 +0,0 @@ -adam_beta1: 0.9 -adam_beta2: 0.999 -adam_epsilon: 1.0e-08 -adam_weight_decay: 0.01 -allow_tf32: false -alpha: 0.9 -cam_ext_mask_prob: -1.0 -checkpointing_period: 2000 -checkpoints_total_limit: 15 -cond_mask_prob: 0.1 -config_path: configs/base.yaml -dataloader_num_workers: 8 -dataset_type: finetune -deepspeed: ./configs/zero2.json -gradient_accumulation_steps: 1 -gradient_checkpointing: false -hub_model_id: null -hub_token: null -image_aug: true -learning_rate: 0.0001 -load_from_hdf5: true -local_rank: 0 -logging_dir: logs -lr_num_cycles: 1 -lr_power: 1.0 -lr_scheduler: constant_with_warmup -lr_warmup_steps: 500 -max_grad_norm: 1.0 -max_train_steps: 160000 -mixed_precision: bf16 -num_sample_batches: 2 -num_train_epochs: 3334 -output_dir: /mnt/data/xurongtao/checkpoints/afford_1b_three_qwen_warmup_0224 -precomp_lang_embed: false -pretrained_model_name_or_path: null -pretrained_text_encoder_name_or_path: google/t5-v1_1-xxl -pretrained_vision_encoder_name_or_path: google/siglip-so400m-patch14-384 -push_to_hub: false -report_to: tensorboard -resume_from_checkpoint: checkpoint-70000 -sample_batch_size: 35 -sample_period: 150 -scale_lr: false -seed: null -set_grads_to_none: false -state_noise_snr: 40.0 -train_batch_size: 50 -use_8bit_adam: false diff --git a/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/events.out.tfevents.1740318351.computer4.3891237.0 b/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/events.out.tfevents.1740318351.computer4.3891237.0 deleted file mode 100644 index d424807e953a33345e24f29da6731277e223e1b4..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/events.out.tfevents.1740318351.computer4.3891237.0 +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8d1eb5ba077d4fd9163092836347d9f0ed43b9910f7a7a92940fe265124866df -size 980223 diff --git a/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/events.out.tfevents.1740325720.computer4.4166006.0 b/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/events.out.tfevents.1740325720.computer4.4166006.0 deleted file mode 100644 index 96dd83e5c014e7c3d4e1274e8e5b2d534b439719..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/events.out.tfevents.1740325720.computer4.4166006.0 +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:12870892e95080a377c5bd9d7b1569ac65f8eb00a28c908249d2894adc7cb26a -size 8044 diff --git a/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/events.out.tfevents.1740325876.computer4.4187731.0 b/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/events.out.tfevents.1740325876.computer4.4187731.0 deleted file mode 100644 index 669b212b452e1a3e855ba65c9f1c32e605c7a9b5..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/events.out.tfevents.1740325876.computer4.4187731.0 +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a6a961b8cfcf29caab6aa2399bf9fc738861fcf0f246d756ebc2e8b2bd5a076e -size 8388608 diff --git a/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/events.out.tfevents.1740415627.computer4.3743808.0 b/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/events.out.tfevents.1740415627.computer4.3743808.0 deleted file mode 100644 index 7dae327713e09524bea26d0ecdf8805333677a80..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/events.out.tfevents.1740415627.computer4.3743808.0 +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:499087c13943a147cc51c1d59f16fa7e4b1644419e250f860c265504775938f2 -size 7053478 diff --git a/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/events.out.tfevents.1740479243.computer4.3883696.0 b/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/events.out.tfevents.1740479243.computer4.3883696.0 deleted file mode 100644 index 495be5c28dcff01ac2da1997f851b89274e201b2..0000000000000000000000000000000000000000 --- a/afford_1b_three_qwen_warmup_0224/logs/roboticDiffusionTransformer/events.out.tfevents.1740479243.computer4.3883696.0 +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5ee2c15df5439aa2ee19f705bfe07185fd33145997bef94c1273612af40a7f02 -size 88