updating the repo with the fine-tuned model
Browse files- README.md +130 -0
- all_results.json +7 -0
- config.json +35 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +14 -0
- train_results.json +7 -0
- trainer_state.json +121 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
README.md
ADDED
|
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- generated_from_trainer
|
| 5 |
+
metrics:
|
| 6 |
+
- accuracy
|
| 7 |
+
- precision
|
| 8 |
+
- recall
|
| 9 |
+
- f1
|
| 10 |
+
model-index:
|
| 11 |
+
- name: uwb_atcc
|
| 12 |
+
results: []
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 16 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 17 |
+
|
| 18 |
+
# uwb_atcc
|
| 19 |
+
|
| 20 |
+
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
|
| 21 |
+
It achieves the following results on the evaluation set:
|
| 22 |
+
- Loss: 0.6191
|
| 23 |
+
- Accuracy: 0.9103
|
| 24 |
+
- Precision: 0.9239
|
| 25 |
+
- Recall: 0.9161
|
| 26 |
+
- F1: 0.9200
|
| 27 |
+
- Report: precision recall f1-score support
|
| 28 |
+
|
| 29 |
+
0 0.89 0.90 0.90 463
|
| 30 |
+
1 0.92 0.92 0.92 596
|
| 31 |
+
|
| 32 |
+
accuracy 0.91 1059
|
| 33 |
+
macro avg 0.91 0.91 0.91 1059
|
| 34 |
+
weighted avg 0.91 0.91 0.91 1059
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
## Model description
|
| 38 |
+
|
| 39 |
+
More information needed
|
| 40 |
+
|
| 41 |
+
## Intended uses & limitations
|
| 42 |
+
|
| 43 |
+
More information needed
|
| 44 |
+
|
| 45 |
+
## Training and evaluation data
|
| 46 |
+
|
| 47 |
+
More information needed
|
| 48 |
+
|
| 49 |
+
## Training procedure
|
| 50 |
+
|
| 51 |
+
### Training hyperparameters
|
| 52 |
+
|
| 53 |
+
The following hyperparameters were used during training:
|
| 54 |
+
- learning_rate: 5e-05
|
| 55 |
+
- train_batch_size: 32
|
| 56 |
+
- eval_batch_size: 16
|
| 57 |
+
- seed: 42
|
| 58 |
+
- gradient_accumulation_steps: 2
|
| 59 |
+
- total_train_batch_size: 64
|
| 60 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 61 |
+
- lr_scheduler_type: linear
|
| 62 |
+
- lr_scheduler_warmup_steps: 500
|
| 63 |
+
- training_steps: 3000
|
| 64 |
+
|
| 65 |
+
### Training results
|
| 66 |
+
|
| 67 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Report |
|
| 68 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
| 69 |
+
| No log | 3.36 | 500 | 0.2346 | 0.9207 | 0.9197 | 0.9413 | 0.9303 | precision recall f1-score support
|
| 70 |
+
|
| 71 |
+
0 0.92 0.89 0.91 463
|
| 72 |
+
1 0.92 0.94 0.93 596
|
| 73 |
+
|
| 74 |
+
accuracy 0.92 1059
|
| 75 |
+
macro avg 0.92 0.92 0.92 1059
|
| 76 |
+
weighted avg 0.92 0.92 0.92 1059
|
| 77 |
+
|
|
| 78 |
+
| 0.2212 | 6.71 | 1000 | 0.3161 | 0.9046 | 0.9260 | 0.9027 | 0.9142 | precision recall f1-score support
|
| 79 |
+
|
| 80 |
+
0 0.88 0.91 0.89 463
|
| 81 |
+
1 0.93 0.90 0.91 596
|
| 82 |
+
|
| 83 |
+
accuracy 0.90 1059
|
| 84 |
+
macro avg 0.90 0.90 0.90 1059
|
| 85 |
+
weighted avg 0.91 0.90 0.90 1059
|
| 86 |
+
|
|
| 87 |
+
| 0.2212 | 10.07 | 1500 | 0.4337 | 0.9065 | 0.9191 | 0.9144 | 0.9167 | precision recall f1-score support
|
| 88 |
+
|
| 89 |
+
0 0.89 0.90 0.89 463
|
| 90 |
+
1 0.92 0.91 0.92 596
|
| 91 |
+
|
| 92 |
+
accuracy 0.91 1059
|
| 93 |
+
macro avg 0.90 0.91 0.91 1059
|
| 94 |
+
weighted avg 0.91 0.91 0.91 1059
|
| 95 |
+
|
|
| 96 |
+
| 0.0651 | 13.42 | 2000 | 0.4743 | 0.9178 | 0.9249 | 0.9295 | 0.9272 | precision recall f1-score support
|
| 97 |
+
|
| 98 |
+
0 0.91 0.90 0.91 463
|
| 99 |
+
1 0.92 0.93 0.93 596
|
| 100 |
+
|
| 101 |
+
accuracy 0.92 1059
|
| 102 |
+
macro avg 0.92 0.92 0.92 1059
|
| 103 |
+
weighted avg 0.92 0.92 0.92 1059
|
| 104 |
+
|
|
| 105 |
+
| 0.0651 | 16.78 | 2500 | 0.5538 | 0.9103 | 0.9196 | 0.9211 | 0.9204 | precision recall f1-score support
|
| 106 |
+
|
| 107 |
+
0 0.90 0.90 0.90 463
|
| 108 |
+
1 0.92 0.92 0.92 596
|
| 109 |
+
|
| 110 |
+
accuracy 0.91 1059
|
| 111 |
+
macro avg 0.91 0.91 0.91 1059
|
| 112 |
+
weighted avg 0.91 0.91 0.91 1059
|
| 113 |
+
|
|
| 114 |
+
| 0.0296 | 20.13 | 3000 | 0.6191 | 0.9103 | 0.9239 | 0.9161 | 0.9200 | precision recall f1-score support
|
| 115 |
+
|
| 116 |
+
0 0.89 0.90 0.90 463
|
| 117 |
+
1 0.92 0.92 0.92 596
|
| 118 |
+
|
| 119 |
+
accuracy 0.91 1059
|
| 120 |
+
macro avg 0.91 0.91 0.91 1059
|
| 121 |
+
weighted avg 0.91 0.91 0.91 1059
|
| 122 |
+
|
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
### Framework versions
|
| 126 |
+
|
| 127 |
+
- Transformers 4.24.0
|
| 128 |
+
- Pytorch 1.13.0+cu117
|
| 129 |
+
- Datasets 2.7.0
|
| 130 |
+
- Tokenizers 0.13.2
|
all_results.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 20.13,
|
| 3 |
+
"train_loss": 0.10527635129292806,
|
| 4 |
+
"train_runtime": 3964.4436,
|
| 5 |
+
"train_samples_per_second": 48.431,
|
| 6 |
+
"train_steps_per_second": 0.757
|
| 7 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "experiments/results/spk_id/bert-base-uncased/1234/uwb_atcc//",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"BertForSequenceClassification"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"gradient_checkpointing": false,
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_dropout_prob": 0.1,
|
| 11 |
+
"hidden_size": 768,
|
| 12 |
+
"id2label": {
|
| 13 |
+
"0": "atco",
|
| 14 |
+
"1": "pilot"
|
| 15 |
+
},
|
| 16 |
+
"initializer_range": 0.02,
|
| 17 |
+
"intermediate_size": 3072,
|
| 18 |
+
"label2id": {
|
| 19 |
+
"atco": 0,
|
| 20 |
+
"pilot": 1
|
| 21 |
+
},
|
| 22 |
+
"layer_norm_eps": 1e-12,
|
| 23 |
+
"max_position_embeddings": 512,
|
| 24 |
+
"model_type": "bert",
|
| 25 |
+
"num_attention_heads": 12,
|
| 26 |
+
"num_hidden_layers": 12,
|
| 27 |
+
"pad_token_id": 0,
|
| 28 |
+
"position_embedding_type": "absolute",
|
| 29 |
+
"problem_type": "single_label_classification",
|
| 30 |
+
"torch_dtype": "float32",
|
| 31 |
+
"transformers_version": "4.24.0",
|
| 32 |
+
"type_vocab_size": 2,
|
| 33 |
+
"use_cache": true,
|
| 34 |
+
"vocab_size": 30522
|
| 35 |
+
}
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5e1125e744c982b578daf74f01675ccfefb5bc72751764b40982f3934a197a4e
|
| 3 |
+
size 438005109
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"do_lower_case": true,
|
| 4 |
+
"mask_token": "[MASK]",
|
| 5 |
+
"model_max_length": 512,
|
| 6 |
+
"name_or_path": "experiments/results/spk_id/bert-base-uncased/1234/uwb_atcc//",
|
| 7 |
+
"pad_token": "[PAD]",
|
| 8 |
+
"sep_token": "[SEP]",
|
| 9 |
+
"special_tokens_map_file": null,
|
| 10 |
+
"strip_accents": null,
|
| 11 |
+
"tokenize_chinese_chars": true,
|
| 12 |
+
"tokenizer_class": "BertTokenizer",
|
| 13 |
+
"unk_token": "[UNK]"
|
| 14 |
+
}
|
train_results.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 20.13,
|
| 3 |
+
"train_loss": 0.10527635129292806,
|
| 4 |
+
"train_runtime": 3964.4436,
|
| 5 |
+
"train_samples_per_second": 48.431,
|
| 6 |
+
"train_steps_per_second": 0.757
|
| 7 |
+
}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 20.13422818791946,
|
| 5 |
+
"global_step": 3000,
|
| 6 |
+
"is_hyper_param_search": false,
|
| 7 |
+
"is_local_process_zero": true,
|
| 8 |
+
"is_world_process_zero": true,
|
| 9 |
+
"log_history": [
|
| 10 |
+
{
|
| 11 |
+
"epoch": 3.36,
|
| 12 |
+
"eval_accuracy": 0.9206798866855525,
|
| 13 |
+
"eval_f1": 0.9303482587064678,
|
| 14 |
+
"eval_loss": 0.2345595508813858,
|
| 15 |
+
"eval_precision": 0.919672131147541,
|
| 16 |
+
"eval_recall": 0.9412751677852349,
|
| 17 |
+
"eval_report": " precision recall f1-score support\n\n 0 0.92 0.89 0.91 463\n 1 0.92 0.94 0.93 596\n\n accuracy 0.92 1059\n macro avg 0.92 0.92 0.92 1059\nweighted avg 0.92 0.92 0.92 1059\n",
|
| 18 |
+
"eval_runtime": 8.0364,
|
| 19 |
+
"eval_samples_per_second": 131.775,
|
| 20 |
+
"eval_steps_per_second": 8.337,
|
| 21 |
+
"step": 500
|
| 22 |
+
},
|
| 23 |
+
{
|
| 24 |
+
"epoch": 6.71,
|
| 25 |
+
"learning_rate": 4e-05,
|
| 26 |
+
"loss": 0.2212,
|
| 27 |
+
"step": 1000
|
| 28 |
+
},
|
| 29 |
+
{
|
| 30 |
+
"epoch": 6.71,
|
| 31 |
+
"eval_accuracy": 0.9046270066100094,
|
| 32 |
+
"eval_f1": 0.9141886151231945,
|
| 33 |
+
"eval_loss": 0.31608325242996216,
|
| 34 |
+
"eval_precision": 0.9259896729776248,
|
| 35 |
+
"eval_recall": 0.9026845637583892,
|
| 36 |
+
"eval_report": " precision recall f1-score support\n\n 0 0.88 0.91 0.89 463\n 1 0.93 0.90 0.91 596\n\n accuracy 0.90 1059\n macro avg 0.90 0.90 0.90 1059\nweighted avg 0.91 0.90 0.90 1059\n",
|
| 37 |
+
"eval_runtime": 8.0054,
|
| 38 |
+
"eval_samples_per_second": 132.285,
|
| 39 |
+
"eval_steps_per_second": 8.369,
|
| 40 |
+
"step": 1000
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"epoch": 10.07,
|
| 44 |
+
"eval_accuracy": 0.9065155807365439,
|
| 45 |
+
"eval_f1": 0.9167367535744324,
|
| 46 |
+
"eval_loss": 0.43374723196029663,
|
| 47 |
+
"eval_precision": 0.9190556492411467,
|
| 48 |
+
"eval_recall": 0.9144295302013423,
|
| 49 |
+
"eval_report": " precision recall f1-score support\n\n 0 0.89 0.90 0.89 463\n 1 0.92 0.91 0.92 596\n\n accuracy 0.91 1059\n macro avg 0.90 0.91 0.91 1059\nweighted avg 0.91 0.91 0.91 1059\n",
|
| 50 |
+
"eval_runtime": 8.0154,
|
| 51 |
+
"eval_samples_per_second": 132.12,
|
| 52 |
+
"eval_steps_per_second": 8.359,
|
| 53 |
+
"step": 1500
|
| 54 |
+
},
|
| 55 |
+
{
|
| 56 |
+
"epoch": 13.42,
|
| 57 |
+
"learning_rate": 2e-05,
|
| 58 |
+
"loss": 0.0651,
|
| 59 |
+
"step": 2000
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"epoch": 13.42,
|
| 63 |
+
"eval_accuracy": 0.9178470254957507,
|
| 64 |
+
"eval_f1": 0.9271966527196652,
|
| 65 |
+
"eval_loss": 0.47431105375289917,
|
| 66 |
+
"eval_precision": 0.9248747913188647,
|
| 67 |
+
"eval_recall": 0.9295302013422819,
|
| 68 |
+
"eval_report": " precision recall f1-score support\n\n 0 0.91 0.90 0.91 463\n 1 0.92 0.93 0.93 596\n\n accuracy 0.92 1059\n macro avg 0.92 0.92 0.92 1059\nweighted avg 0.92 0.92 0.92 1059\n",
|
| 69 |
+
"eval_runtime": 8.0135,
|
| 70 |
+
"eval_samples_per_second": 132.152,
|
| 71 |
+
"eval_steps_per_second": 8.361,
|
| 72 |
+
"step": 2000
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"epoch": 16.78,
|
| 76 |
+
"eval_accuracy": 0.9102927289896129,
|
| 77 |
+
"eval_f1": 0.9203688181056161,
|
| 78 |
+
"eval_loss": 0.5537705421447754,
|
| 79 |
+
"eval_precision": 0.9195979899497487,
|
| 80 |
+
"eval_recall": 0.9211409395973155,
|
| 81 |
+
"eval_report": " precision recall f1-score support\n\n 0 0.90 0.90 0.90 463\n 1 0.92 0.92 0.92 596\n\n accuracy 0.91 1059\n macro avg 0.91 0.91 0.91 1059\nweighted avg 0.91 0.91 0.91 1059\n",
|
| 82 |
+
"eval_runtime": 8.0263,
|
| 83 |
+
"eval_samples_per_second": 131.941,
|
| 84 |
+
"eval_steps_per_second": 8.348,
|
| 85 |
+
"step": 2500
|
| 86 |
+
},
|
| 87 |
+
{
|
| 88 |
+
"epoch": 20.13,
|
| 89 |
+
"learning_rate": 0.0,
|
| 90 |
+
"loss": 0.0296,
|
| 91 |
+
"step": 3000
|
| 92 |
+
},
|
| 93 |
+
{
|
| 94 |
+
"epoch": 20.13,
|
| 95 |
+
"eval_accuracy": 0.9102927289896129,
|
| 96 |
+
"eval_f1": 0.9199663016006739,
|
| 97 |
+
"eval_loss": 0.6190621256828308,
|
| 98 |
+
"eval_precision": 0.9238578680203046,
|
| 99 |
+
"eval_recall": 0.9161073825503355,
|
| 100 |
+
"eval_report": " precision recall f1-score support\n\n 0 0.89 0.90 0.90 463\n 1 0.92 0.92 0.92 596\n\n accuracy 0.91 1059\n macro avg 0.91 0.91 0.91 1059\nweighted avg 0.91 0.91 0.91 1059\n",
|
| 101 |
+
"eval_runtime": 8.0249,
|
| 102 |
+
"eval_samples_per_second": 131.965,
|
| 103 |
+
"eval_steps_per_second": 8.349,
|
| 104 |
+
"step": 3000
|
| 105 |
+
},
|
| 106 |
+
{
|
| 107 |
+
"epoch": 20.13,
|
| 108 |
+
"step": 3000,
|
| 109 |
+
"total_flos": 5.04436515336192e+16,
|
| 110 |
+
"train_loss": 0.10527635129292806,
|
| 111 |
+
"train_runtime": 3964.4436,
|
| 112 |
+
"train_samples_per_second": 48.431,
|
| 113 |
+
"train_steps_per_second": 0.757
|
| 114 |
+
}
|
| 115 |
+
],
|
| 116 |
+
"max_steps": 3000,
|
| 117 |
+
"num_train_epochs": 21,
|
| 118 |
+
"total_flos": 5.04436515336192e+16,
|
| 119 |
+
"trial_name": null,
|
| 120 |
+
"trial_params": null
|
| 121 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:766182c45bbaddf86724696e93caca89d45786b72cab46c2a9020624460ca63e
|
| 3 |
+
size 3451
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|