---
library_name: transformers
license: mit
language:
- hu
base_model:
- jhu-clsp/mmBERT-small
pipeline_tag: token-classification
tags:
- token classification
- hallucination detection
- transformers
- question answer
datasets:
- KRLabsOrg/ragtruth-hu-translated
---
# LettuceDetect: Hungarian Hallucination Detection Model
**Model Name:** lettucedect-mmbert-small-hu-v1
**Organization:** KRLabsOrg
**Github:** https://github.com/KRLabsOrg/LettuceDetect
## Overview
LettuceDetect is a transformer-based model for hallucination detection on context and answer pairs, designed for Retrieval-Augmented Generation (RAG) applications. This model is built on **ModernBERT**, which has been specifically chosen and trained becasue of its extended context support (up to **8192 tokens**). This long-context capability is critical for tasks where detailed and extensive documents need to be processed to accurately determine if an answer is supported by the provided context.
**This is our Large model based on ModernBERT-large**
## Model Details
- **Architecture:** mmBERT-small with extended context support (up to 8192 tokens)
- **Task:** Token Classification / Hallucination Detection
- **Training Dataset:** RagTruth-HU
- **Language:** Hungarian
## How It Works
The model is trained to identify tokens in the answer text that are not supported by the given context. During inference, the model returns token-level predictions which are then aggregated into spans. This allows users to see exactly which parts of the answer are considered hallucinated.
## Usage
### Installation
Install the 'lettucedetect' repository
```bash
pip install lettucedetect
```
### Using the model
```python
from lettucedetect.models.inference import HallucinationDetector
detector = HallucinationDetector(
method="transformer",
model_path="KRLabsOrg/lettucedect-mmbert-small-hu-v1",
lang="hu",
trust_remote_code=True
)
contexts = [
"Franciaország fővárosa Párizs. Franciaország népessége 67 millió fő. Franciaország területe 551 695 km²."
]
question = "Mennyi Franciaország népessége?"
answer = "Franciaország népessége 125 millió fő."
predictions = detector.predict(context=contexts, question=question, answer=answer, output_format="spans")
print("Predictions:", predictions)
# Predictions: [{'start': 0, 'end': 23, 'confidence': 0.9059492349624634, 'text': 'Franciaország népessége'}, {'start': 24, 'end': 34, 'confidence': 0.8549801707267761, 'text': '125 millió'}, {'start': 37, 'end': 38, 'confidence': 0.7141280174255371, 'text': '.'}]
```
## Performance
**Results on Translated RAGTruth-HU (Class 1: Hallucination)**
We evaluate our Hungarian models on the translated [RAGTruth](https://aclanthology.org/2024.acl-long.585/) dataset. As a prompt baseline we include **meta-llama/Llama-4-Maverick-17B-128E-Instruct**.
| Language | Model | Precision (%) | Recall (%) | F1 (%) | Maverick F1 (%) | Δ F1 (%) |
|----------|-----------------------------------------|---------------|------------|--------|-----------------|----------|
| Hungarian | meta-llama/Llama-4-Maverick-17B-128E-Instruct | 38.70 | **96.82** | 55.30 | 55.30 | +0.00 |
| Hungarian | lettucedect-mmBERT-small (ours) | 70.20 | 72.51 | 71.33 | 55.30 | **+16.03** |
| Hungarian | lettucedect-mmBERT-base (ours) | **76.62** | 69.21 | **72.73** | 55.30 | **+17.43** |
*Note:* Percentages are reported for the hallucination class (Class 1). Δ F1 is measured in percentage points vs. the Maverick baseline.
## Citing
If you use the model or the tool, please cite the following paper:
```bibtex
@misc{Kovacs:2025,
title={LettuceDetect: A Hallucination Detection Framework for RAG Applications},
author={Ádám Kovács and Gábor Recski},
year={2025},
eprint={2502.17125},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2502.17125},
}
```