LZXzju commited on
Commit
9cc2fbb
·
verified ·
1 Parent(s): 2b1dd70

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +156 -1
README.md CHANGED
@@ -10,4 +10,159 @@ pipeline_tag: visual-question-answering
10
 
11
  This repository contains the model presented in [UI-R1: Enhancing Action Prediction of GUI Agents by Reinforcement Learning](https://huggingface.co/papers/2503.21620).
12
 
13
- Project page: https://github.com/lll6gg/UI-R1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
  This repository contains the model presented in [UI-R1: Enhancing Action Prediction of GUI Agents by Reinforcement Learning](https://huggingface.co/papers/2503.21620).
12
 
13
+ Project page: https://github.com/lll6gg/UI-R1
14
+
15
+ New version: [UI-R1-E-3B](https://huggingface.co/LZXzju/Qwen2.5-VL-3B-UI-R1-E)
16
+
17
+ ## Benchmark 1: ScreenSpotV2
18
+
19
+ | ScreenSpotV2 | inference mode | Mobile-T | Mobile-I | Desktop-T | Desktop-I | Web-T | Web-I | Avg↑ / Len↓ |
20
+ | ------------- | -------------- | -------- | -------- | --------- | --------- | -------- | -------- | ----------------- |
21
+ | OS-ATLAS-7B | w/o thinking | 95.2 | 75.8 | 90.7 | 63.6 | 90.6 | 77.3 | 84.1 / |
22
+ | UI-TARS-7B | w/o thinking | 95.2 | 79.1 | 90.7 | 68.6 | 90.6 | 78.3 | 84.7 / |
23
+ | UI-R1-3B (v1) | w/ thinking | 96.2 | **84.3** | 92.3 | 63.6 | 89.2 | 75.4 | 85.4 / 67 |
24
+ | GUI-R1-3B | w/ thinking | 97.6 | 78.2 | 94.3 | 64.3 | 91.0 | 72.4 | 85.0 / 80 |
25
+ | UI-R1-3B (v2) | w/ thinking | 97.6 | 79.6 | 92.3 | 67.9 | 88.9 | 77.8 | 85.8 / 60 |
26
+ | **UI-R1-E-3B** | w/o thinking | **98.2** | 83.9 | **94.8** | **75.0** | **93.2** | **83.7** | **89.5** / **28** |
27
+ ## Benchmark 2: ScreenSpot-Pro
28
+
29
+ | ScreenSpot-Pro | inference mode | Average Length↓ | Average Accuracy↑ |
30
+ | -------------- | -------------- | --------------- | ---------------- |
31
+ | UGround-7B | w/o thinking | - | 16.5 |
32
+ | OS-ATLAS-7B | w/o thinking | - | 18.9 |
33
+ | UI-R1-3B (v1) | w/ thinking | 102 | 17.8 |
34
+ | GUI-R1-3B | w/ thinking | 114 | 26.6 |
35
+ | UI-R1-3B (v2) | w/ thinking | 129 | 29.8 |
36
+ | **UI-R1-E-3B** | w/o thinking | **28** | **33.5** |
37
+ ## Leaderboard: UI-I2E-Bench
38
+ | Model | ScreenSpot | UI-I2E-Bench Avg | ScreenSpot-Pro | Avg |
39
+ | :------------: | :--------: | :--------------: | :------------: | :--: |
40
+ | UI-TARS-1.5-7B | 88.1 | 73.2 | 42.2 | 67.8 |
41
+ | Uground-V1-72B | 89.7 | 76.3 | 34.3 | 66.8 |
42
+ | UI-TARS-72B | 88.4 | 73.7 | 38.1 | 66.7 |
43
+ | **UI-R1-E-3B** | 89.2 | 69.1 | 33.5 | 63.9 |
44
+ | Uground-V1-7B | 87.1 | 70.3 | 31.1 | 62.8 |
45
+ | InfiGUI-R1 | 87.5 | 69.7 | 29.6 | 62.3 |
46
+ | UI-TARS-7B | 89.5 | 61.4 | 35.7 | 62.2 |
47
+ | Qwen2.5-VL-72B | 87.1 | 51.4 | 43.6 | 60.7 |
48
+ | UI-I2E-VLM-7B | 82.5 | 69.5 | 23.6 | 58.5 |
49
+ | UI-TARS-2B | 82.3 | 62 | 27.7 | 57.3 |
50
+ | Qwen2.5-VL-7B | 84.7 | 53.8 | 29 | 55.8 |
51
+ | OmniParser-V2 | 72 | 54.8 | 39.6 | 55.5 |
52
+ | Uground-V1-2B | 78.8 | 57.4 | 26.6 | 54.3 |
53
+ | OS-Atlas-7B | 82.5 | 58.6 | 18.9 | 53.3 |
54
+ | **UI-R1-3B** | 83.3 | 58.5 | 17.8 | 53.2 |
55
+ | UGround-7B | 74.1 | 54.2 | 16.5 | 48.3 |
56
+ | UI-I2E-VLM-4B | 70.4 | 53.4 | 12.2 | 45.3 |
57
+ | OmniParser | 73.9 | 53.1 | 8.3 | 45.1 |
58
+ | ShowUI-2B | 76.8 | 41.5 | 7.7 | 42 |
59
+ | Qwen2.5-VL-3B | 55.5 | 41.7 | 23.9 | 41.3 |
60
+ | Aguvis-7B | 84.4 | 53.2 | 22.9 | 40.4 |
61
+ | OS-Atlas-4B | 70.1 | 44.3 | 3.7 | 39.4 |
62
+ | Qwen2-VL-7B | 42.6 | 48.7 | 1.6 | 31 |
63
+ | Seeclick | 55.8 | 26.4 | 1.1 | 27.8 |
64
+ | InternVL2-4B | 4.2 | 0.9 | 0.3 | 1.8 |
65
+
66
+ ## Evaluation Code for GUI Grounding
67
+
68
+ 1. Generation for UI-R1-E-3B:
69
+
70
+ ```python
71
+ model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
72
+ args.model_path,
73
+ torch_dtype=torch.bfloat16,
74
+ attn_implementation="flash_attention_2",
75
+ device_map="cpu",
76
+ )
77
+ model = model.to(torch.device(rank))
78
+ model = model.eval()
79
+ processor = AutoProcessor.from_pretrained(ori_processor_path)
80
+ question_template = (
81
+ f"In this UI screenshot, I want to perform the command '{task_prompt}'.\n"
82
+ "Please provide the action to perform (enumerate in ['click', 'scroll']) and the coordinate where the cursor is moved to(integer) if click is performed.\n"
83
+ "Output the thinking process in <think> </think> and final answer in <answer> </answer> tags."
84
+ "The output answer format should be as follows:\n"
85
+ "<think> ... </think> <answer>[{'action': enum['click', 'scroll'], 'coordinate': [x, y]}]</answer>\n"
86
+ "Please strictly follow the format."
87
+ )
88
+ query = '<image>\n' + question_template
89
+ messages = [
90
+ {
91
+ "role": "user",
92
+ "content": [
93
+ {"type": "image", "image": image_path}
94
+ ] + [{"type": "text", "text": query}],
95
+ }
96
+ ]
97
+ text = processor.apply_chat_template(
98
+ messages, tokenize=False, add_generation_prompt=True
99
+ )
100
+ image_inputs, video_inputs = process_vision_info(messages)
101
+ inputs = processor(
102
+ text=[text],
103
+ images=image_inputs,
104
+ videos=video_inputs,
105
+ padding=True,
106
+ return_tensors="pt",
107
+ )
108
+ generated_ids = model.generate(**inputs, max_new_tokens=1024)
109
+ generated_ids_trimmed = [
110
+ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
111
+ ]
112
+ response = processor.batch_decode(
113
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
114
+ )
115
+ response = response[0]
116
+ pred_coord, _ = extract_coord(response)
117
+ ```
118
+
119
+
120
+
121
+ 2. Rescale the predicted coordinate according to the image resize (especially image_size > 12845056)
122
+
123
+ ```python
124
+ image = Image.open(image_path)
125
+ origin_width, origin_height = image.size
126
+ resized_height,resized_width = smart_resize(origin_height,origin_width,max_pixels=12845056)
127
+ scale_x = origin_width / resized_width
128
+ scale_y = origin_height / resized_height
129
+ pred_coord[0] = int(pred_coord[0] * scale_x)
130
+ pred_coord[1] = int(pred_coord[1] * scale_y)
131
+ ```
132
+
133
+ Function smart_resize is from Qwen2VL:
134
+
135
+ ```python
136
+ import math
137
+ def smart_resize(
138
+ height: int, width: int, factor: int = 28, min_pixels: int = 56 * 56, max_pixels: int = 14 * 14 * 4 * 1280
139
+ ):
140
+ """Rescales the image so that the following conditions are met:
141
+
142
+ 1. Both dimensions (height and width) are divisible by 'factor'.
143
+
144
+ 2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
145
+
146
+ 3. The aspect ratio of the image is maintained as closely as possible.
147
+
148
+ """
149
+ if height < factor or width < factor:
150
+ raise ValueError(f"height:{height} or width:{width} must be larger than factor:{factor}")
151
+ elif max(height, width) / min(height, width) > 200:
152
+ raise ValueError(
153
+ f"absolute aspect ratio must be smaller than 200, got {max(height, width) / min(height, width)}"
154
+ )
155
+ h_bar = round(height / factor) * factor
156
+ w_bar = round(width / factor) * factor
157
+ if h_bar * w_bar > max_pixels:
158
+ beta = math.sqrt((height * width) / max_pixels)
159
+ h_bar = math.floor(height / beta / factor) * factor
160
+ w_bar = math.floor(width / beta / factor) * factor
161
+ elif h_bar * w_bar < min_pixels:
162
+ beta = math.sqrt(min_pixels / (height * width))
163
+ h_bar = math.ceil(height * beta / factor) * factor
164
+ w_bar = math.ceil(width * beta / factor) * factor
165
+ return h_bar, w_bar
166
+ ```
167
+
168
+