File size: 26,310 Bytes
ac4be89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:169967
- loss:MultipleNegativesSymmetricRankingLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: blue dianne
  sentences:
  - soap
  - maximize the freshness of your food for 12 hours with the blue dianne thermal
    bag. its triple compartments, spacious storage, heat resistance, and 100% leakproof
    design will keep it fresh. this bpa-free and pvc-free bag is also 100% non-toxic
    and comes with a 3-month guarantee. ideal for everyday food storage.
  - trolley backpack coral high colors 17 l 3 zippers 23977
- source_sentence: the forty-fifth minute
  sentences:
  - 'literature book '
  - turkish dress.
  - the making of modern middle
- source_sentence: snowflake pralines & cream
  sentences:
  - smoked turkey sandwich
  - walnut cupcake
  - chicken burrito
- source_sentence: amytis indigo cushion
  sentences:
  - christian lacroix cushion
  - sealy boats 300 tc cotton bedsheet
  - boys lunch bag
- source_sentence: hiit biker shorts - black
  sentences:
  - sweet pastry
  - black shorts
  - winter slippers for ladies christmas themed
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
  results:
  - task:
      type: triplet
      name: Triplet
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy
      value: 0.9472126364707947
      name: Cosine Accuracy
---

# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("LamaDiab/MiniLM-SemanticEngine")
# Run inference
sentences = [
    'hiit biker shorts - black',
    'black shorts',
    'winter slippers for ladies christmas themed',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000,  0.7103, -0.0705],
#         [ 0.7103,  1.0000, -0.0356],
#         [-0.0705, -0.0356,  1.0000]])
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Triplet

* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| **cosine_accuracy** | **0.9472** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 169,967 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 3 tokens</li><li>mean: 8.82 tokens</li><li>max: 237 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 14.99 tokens</li><li>max: 256 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | positive                  |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------|
  | <code>orasi barista almond milk is a premium, plant-based milk designed specifically for coffee lovers. crafted to create the perfect froth, it delivers a smooth and creamy texture that enhances the flavor of your lattes, cappuccinos, and other coffee drinks.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <code>groceries</code>    |
  | <code>this toy is a "modern fashion" doll, combining beauty and innovation in its design. the doll has long and pink hair that adds a modern and attractive character to it. it comes with a wide variety of clothes and cool accessories that allow children to switch outfits and try different looks.
  <br>features:
  <br>modern and attractive design: the doll has a stylish and modern design that suits the tastes of children of different ages.
  <br>long and colorful hair: long and colorful hair gives the doll a distinctive and beautiful look, enhancing the possibilities of play and creativity.
  <br>wide range of clothes: the game has a large assortment of clothes that allow children to choose the appropriate outfits for the doll character according to their imagination.
  <br>multiple accessories: it comes with various accessories that add a touch of distinction and elegance to the doll, allowing to experiment with different styles.
  <br>stimulate creativity and imagination: the game helps enhance children's imagination by...</code> | <code>kids</code>         |
  | <code>zinnia ice box vivid gen.2 - blue</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <code>blue ice box</code> |
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim",
      "gather_across_devices": true
  }
  ```

### Evaluation Dataset

#### Unnamed Dataset

* Size: 16,216 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                           | positive                                                                           | negative                                                                         |
  |:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                             | string                                                                           |
  | details | <ul><li>min: 3 tokens</li><li>mean: 9.79 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 19.21 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.76 tokens</li><li>max: 67 tokens</li></ul> |
* Samples:
  | anchor                          | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | negative                                                 |
  |:--------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------|
  | <code>dosado ring</code>        | <code>dosado or dos- à- dos: a wavy movement of two people around eachother, without turning & facing the same direction. material: 18k gold plated hammered brass. size: one size, adjustable. care instructions: to keep the jewelry pieces looking as good as new, please make sure that you store them in an airtight container. they should not come in contact with sweat, water or pefume, alcohol, sanitizers etc. polish with a microfiber cloth.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <code>kiprun ks light men's running shoes - black</code> |
  | <code>puzzle city of fog</code> | <code>this amazing puzzle offers a unique opportunity to explore the beauty of san francisco, also known as the "city by the bay," through assembling a 2000-piece jigsaw. you'll immerse yourself in a world full of colors and details, as your eyes wander across the iconic golden gate bridge, towering buildings, distinctive hilly streets, and sailing ships in the harbor. it’s a panoramic depiction of san francisco, providing a comprehensive view of the city and its landmarks.<br>features:<br>explore san francisco: enjoy a virtual exploration of san francisco without leaving your home. get up close with famous landmarks such as the golden gate bridge and the harbor.<br>improves cognitive skills: assembling the puzzle enhances focus, memory, and fine motor skills while boosting problem-solving and decision-making abilities.<br>relaxation and stress relief: puzzle assembly is a fun and engaging activity that helps to relax and reduce stress, especially when concentrating on the appealing details of san franc...</code> | <code>unicorn</code>                                     |
  | <code>my fault series</code>    | <code>mercedes ron book</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <code>sophie's world</code>                              |
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim",
      "gather_across_devices": true
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `weight_decay`: 0.01
- `num_train_epochs`: 5
- `warmup_ratio`: 0.2
- `fp16`: True
- `dataloader_num_workers`: 2
- `dataloader_prefetch_factor`: 2
- `push_to_hub`: True
- `hub_model_id`: LamaDiab/MiniLM-SemanticEngine
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.01
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.2
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 2
- `dataloader_prefetch_factor`: 2
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: LamaDiab/MiniLM-SemanticEngine
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}

</details>

### Training Logs
| Epoch  | Step  | Training Loss | Validation Loss | cosine_accuracy |
|:------:|:-----:|:-------------:|:---------------:|:---------------:|
| 0.0004 | 1     | 1.6989        | -               | -               |
| 0.1883 | 500   | 1.6103        | 1.4441          | 0.9124          |
| 0.3765 | 1000  | 1.1942        | 1.3155          | 0.9233          |
| 0.5648 | 1500  | 0.9831        | 1.2584          | 0.9257          |
| 0.7530 | 2000  | 0.8867        | 1.2368          | 0.9254          |
| 0.9413 | 2500  | 0.8094        | 1.1874          | 0.9274          |
| 1.1295 | 3000  | 0.5818        | 1.1431          | 0.9348          |
| 1.3178 | 3500  | 0.6978        | 1.1291          | 0.9374          |
| 1.5060 | 4000  | 0.6652        | 1.0936          | 0.9389          |
| 1.6943 | 4500  | 0.6287        | 1.0889          | 0.9369          |
| 1.8825 | 5000  | 0.5986        | 1.0780          | 0.9404          |
| 2.0708 | 5500  | 0.4376        | 1.0783          | 0.9386          |
| 2.2590 | 6000  | 0.511         | 1.0674          | 0.9405          |
| 2.4473 | 6500  | 0.4997        | 1.0412          | 0.9427          |
| 2.6355 | 7000  | 0.4985        | 1.0160          | 0.9441          |
| 2.8238 | 7500  | 0.4798        | 1.0264          | 0.9434          |
| 3.0120 | 8000  | 0.3477        | 1.0153          | 0.9455          |
| 3.2003 | 8500  | 0.4117        | 1.0177          | 0.9461          |
| 3.3886 | 9000  | 0.4302        | 1.0071          | 0.9451          |
| 3.5768 | 9500  | 0.4046        | 1.0171          | 0.9460          |
| 3.7651 | 10000 | 0.414         | 0.9819          | 0.9474          |
| 3.9533 | 10500 | 0.3786        | 0.9982          | 0.9463          |
| 4.1416 | 11000 | 0.2952        | 0.9920          | 0.9461          |
| 4.3298 | 11500 | 0.3655        | 0.9959          | 0.9455          |
| 4.5181 | 12000 | 0.3655        | 0.9961          | 0.9464          |
| 4.7063 | 12500 | 0.3662        | 0.9826          | 0.9467          |
| 4.8946 | 13000 | 0.3545        | 0.9864          | 0.9472          |


### Framework Versions
- Python: 3.11.13
- Sentence Transformers: 5.1.2
- Transformers: 4.53.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.9.0
- Datasets: 4.4.1
- Tokenizers: 0.21.2

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->