File size: 26,310 Bytes
ac4be89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:169967
- loss:MultipleNegativesSymmetricRankingLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: blue dianne
sentences:
- soap
- maximize the freshness of your food for 12 hours with the blue dianne thermal
bag. its triple compartments, spacious storage, heat resistance, and 100% leakproof
design will keep it fresh. this bpa-free and pvc-free bag is also 100% non-toxic
and comes with a 3-month guarantee. ideal for everyday food storage.
- trolley backpack coral high colors 17 l 3 zippers 23977
- source_sentence: the forty-fifth minute
sentences:
- 'literature book '
- turkish dress.
- the making of modern middle
- source_sentence: snowflake pralines & cream
sentences:
- smoked turkey sandwich
- walnut cupcake
- chicken burrito
- source_sentence: amytis indigo cushion
sentences:
- christian lacroix cushion
- sealy boats 300 tc cotton bedsheet
- boys lunch bag
- source_sentence: hiit biker shorts - black
sentences:
- sweet pastry
- black shorts
- winter slippers for ladies christmas themed
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
results:
- task:
type: triplet
name: Triplet
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy
value: 0.9472126364707947
name: Cosine Accuracy
---
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("LamaDiab/MiniLM-SemanticEngine")
# Run inference
sentences = [
'hiit biker shorts - black',
'black shorts',
'winter slippers for ladies christmas themed',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, 0.7103, -0.0705],
# [ 0.7103, 1.0000, -0.0356],
# [-0.0705, -0.0356, 1.0000]])
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Triplet
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| **cosine_accuracy** | **0.9472** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 169,967 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 8.82 tokens</li><li>max: 237 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 14.99 tokens</li><li>max: 256 tokens</li></ul> |
* Samples:
| anchor | positive |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------|
| <code>orasi barista almond milk is a premium, plant-based milk designed specifically for coffee lovers. crafted to create the perfect froth, it delivers a smooth and creamy texture that enhances the flavor of your lattes, cappuccinos, and other coffee drinks.</code> | <code>groceries</code> |
| <code>this toy is a "modern fashion" doll, combining beauty and innovation in its design. the doll has long and pink hair that adds a modern and attractive character to it. it comes with a wide variety of clothes and cool accessories that allow children to switch outfits and try different looks.
<br>features:
<br>modern and attractive design: the doll has a stylish and modern design that suits the tastes of children of different ages.
<br>long and colorful hair: long and colorful hair gives the doll a distinctive and beautiful look, enhancing the possibilities of play and creativity.
<br>wide range of clothes: the game has a large assortment of clothes that allow children to choose the appropriate outfits for the doll character according to their imagination.
<br>multiple accessories: it comes with various accessories that add a touch of distinction and elegance to the doll, allowing to experiment with different styles.
<br>stimulate creativity and imagination: the game helps enhance children's imagination by...</code> | <code>kids</code> |
| <code>zinnia ice box vivid gen.2 - blue</code> | <code>blue ice box</code> |
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": true
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 16,216 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 9.79 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 19.21 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.76 tokens</li><li>max: 67 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:--------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------|
| <code>dosado ring</code> | <code>dosado or dos- à- dos: a wavy movement of two people around eachother, without turning & facing the same direction. material: 18k gold plated hammered brass. size: one size, adjustable. care instructions: to keep the jewelry pieces looking as good as new, please make sure that you store them in an airtight container. they should not come in contact with sweat, water or pefume, alcohol, sanitizers etc. polish with a microfiber cloth.</code> | <code>kiprun ks light men's running shoes - black</code> |
| <code>puzzle city of fog</code> | <code>this amazing puzzle offers a unique opportunity to explore the beauty of san francisco, also known as the "city by the bay," through assembling a 2000-piece jigsaw. you'll immerse yourself in a world full of colors and details, as your eyes wander across the iconic golden gate bridge, towering buildings, distinctive hilly streets, and sailing ships in the harbor. it’s a panoramic depiction of san francisco, providing a comprehensive view of the city and its landmarks.<br>features:<br>explore san francisco: enjoy a virtual exploration of san francisco without leaving your home. get up close with famous landmarks such as the golden gate bridge and the harbor.<br>improves cognitive skills: assembling the puzzle enhances focus, memory, and fine motor skills while boosting problem-solving and decision-making abilities.<br>relaxation and stress relief: puzzle assembly is a fun and engaging activity that helps to relax and reduce stress, especially when concentrating on the appealing details of san franc...</code> | <code>unicorn</code> |
| <code>my fault series</code> | <code>mercedes ron book</code> | <code>sophie's world</code> |
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": true
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `weight_decay`: 0.01
- `num_train_epochs`: 5
- `warmup_ratio`: 0.2
- `fp16`: True
- `dataloader_num_workers`: 2
- `dataloader_prefetch_factor`: 2
- `push_to_hub`: True
- `hub_model_id`: LamaDiab/MiniLM-SemanticEngine
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.01
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.2
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 2
- `dataloader_prefetch_factor`: 2
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: LamaDiab/MiniLM-SemanticEngine
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | cosine_accuracy |
|:------:|:-----:|:-------------:|:---------------:|:---------------:|
| 0.0004 | 1 | 1.6989 | - | - |
| 0.1883 | 500 | 1.6103 | 1.4441 | 0.9124 |
| 0.3765 | 1000 | 1.1942 | 1.3155 | 0.9233 |
| 0.5648 | 1500 | 0.9831 | 1.2584 | 0.9257 |
| 0.7530 | 2000 | 0.8867 | 1.2368 | 0.9254 |
| 0.9413 | 2500 | 0.8094 | 1.1874 | 0.9274 |
| 1.1295 | 3000 | 0.5818 | 1.1431 | 0.9348 |
| 1.3178 | 3500 | 0.6978 | 1.1291 | 0.9374 |
| 1.5060 | 4000 | 0.6652 | 1.0936 | 0.9389 |
| 1.6943 | 4500 | 0.6287 | 1.0889 | 0.9369 |
| 1.8825 | 5000 | 0.5986 | 1.0780 | 0.9404 |
| 2.0708 | 5500 | 0.4376 | 1.0783 | 0.9386 |
| 2.2590 | 6000 | 0.511 | 1.0674 | 0.9405 |
| 2.4473 | 6500 | 0.4997 | 1.0412 | 0.9427 |
| 2.6355 | 7000 | 0.4985 | 1.0160 | 0.9441 |
| 2.8238 | 7500 | 0.4798 | 1.0264 | 0.9434 |
| 3.0120 | 8000 | 0.3477 | 1.0153 | 0.9455 |
| 3.2003 | 8500 | 0.4117 | 1.0177 | 0.9461 |
| 3.3886 | 9000 | 0.4302 | 1.0071 | 0.9451 |
| 3.5768 | 9500 | 0.4046 | 1.0171 | 0.9460 |
| 3.7651 | 10000 | 0.414 | 0.9819 | 0.9474 |
| 3.9533 | 10500 | 0.3786 | 0.9982 | 0.9463 |
| 4.1416 | 11000 | 0.2952 | 0.9920 | 0.9461 |
| 4.3298 | 11500 | 0.3655 | 0.9959 | 0.9455 |
| 4.5181 | 12000 | 0.3655 | 0.9961 | 0.9464 |
| 4.7063 | 12500 | 0.3662 | 0.9826 | 0.9467 |
| 4.8946 | 13000 | 0.3545 | 0.9864 | 0.9472 |
### Framework Versions
- Python: 3.11.13
- Sentence Transformers: 5.1.2
- Transformers: 4.53.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.9.0
- Datasets: 4.4.1
- Tokenizers: 0.21.2
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |