Image-to-Image
univa
Safetensors
univa_qwen2p5vl
LanguageBind commited on
Commit
d206d32
·
verified ·
1 Parent(s): 757e163

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +355 -3
README.md CHANGED
@@ -1,3 +1,355 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
4
+
5
+ <p align="center">
6
+ <img src="https://s21.ax1x.com/2025/06/03/pVCBdw8.png" width="200"/>
7
+ <p>
8
+ <h2 align="center">
9
+ <a href="https://github.com/PKU-YuanGroup/UniWorld-V1/">
10
+ UniWorld: High-Resolution Semantic Encoders for <br> Unified Visual Understanding and Generation
11
+ </a>
12
+ </h2>
13
+
14
+
15
+
16
+ <h5 align="left">
17
+
18
+ [![arXiv](https://img.shields.io/badge/Arxiv-Report%20-b31b1b.svg?logo=arXiv)](https://github.com/user-attachments/files/20573816/report.pdf)
19
+ [![model](https://img.shields.io/badge/🤗-Model-blue.svg)](https://huggingface.co/LanguageBind/UniWorld-V1)
20
+ [![data](https://img.shields.io/badge/🤗-Dataset-blue.svg)](https://huggingface.co/datasets/LanguageBind/UniWorld-V1)
21
+ [![License](https://img.shields.io/badge/License-Apache-yellow)](https://github.com/PKU-YuanGroup/UniWorld/blob/main/LICENSE)
22
+ [![Twitter](https://img.shields.io/badge/-Twitter@LinBin46984-black?logo=twitter&logoColor=1D9BF0)](https://x.com/LinBin46984/status/1929905024349679682) <br>
23
+ [![demo0](https://img.shields.io/badge/🤗-Demo0-blue.svg)](http://8.130.165.159:8800/)
24
+ [![demo0](https://img.shields.io/badge/🤗-Demo1-blue.svg)](http://8.130.165.159:8801/)
25
+ [![demo0](https://img.shields.io/badge/🤗-Demo2-blue.svg)](http://8.130.165.159:8802/)
26
+ [![demo0](https://img.shields.io/badge/🤗-Demo3-blue.svg)](http://8.130.165.159:8803/)
27
+ [![demo0](https://img.shields.io/badge/🤗-Demo4-blue.svg)](http://8.130.165.159:8804/)
28
+ [![demo0](https://img.shields.io/badge/🤗-Demo5-blue.svg)](http://8.130.165.159:8805/)
29
+ [![demo0](https://img.shields.io/badge/🤗-Demo6-blue.svg)](http://8.130.165.159:8806/)
30
+ [![demo0](https://img.shields.io/badge/🤗-Demo7-blue.svg)](http://8.130.165.159:8807/) <br>
31
+ [![GitHub repo stars](https://img.shields.io/github/stars/PKU-YuanGroup/UniWorld-V1?style=flat&logo=github&logoColor=whitesmoke&label=Stars)](https://github.com/PKU-YuanGroup/UniWorld-V1/stargazers)&#160;
32
+ [![GitHub repo forks](https://img.shields.io/github/forks/PKU-YuanGroup/UniWorld-V1?style=flat&logo=github&logoColor=whitesmoke&label=Forks)](https://github.com/PKU-YuanGroup/UniWorld-V1/network)&#160;
33
+ [![GitHub repo watchers](https://img.shields.io/github/watchers/PKU-YuanGroup/UniWorld-V1?style=flat&logo=github&logoColor=whitesmoke&label=Watchers)](https://github.com/PKU-YuanGroup/UniWorld-V1/watchers)&#160;
34
+ [![GitHub repo size](https://img.shields.io/github/repo-size/PKU-YuanGroup/UniWorld-V1?style=flat&logo=github&logoColor=whitesmoke&label=Repo%20Size)](https://github.com/PKU-YuanGroup/UniWorld-V1/archive/refs/heads/main.zip) <br>
35
+ [![GitHub repo contributors](https://img.shields.io/github/contributors-anon/PKU-YuanGroup/UniWorld-V1?style=flat&label=Contributors)](https://github.com/PKU-YuanGroup/UniWorld-V1/graphs/contributors)
36
+ [![GitHub Commit](https://img.shields.io/github/commit-activity/m/PKU-YuanGroup/UniWorld-V1?label=Commit)](https://github.com/PKU-YuanGroup/UniWorld-V1/commits/main/)
37
+ [![Pr](https://img.shields.io/github/issues-pr-closed-raw/PKU-YuanGroup/UniWorld-V1.svg?label=Merged+PRs&color=green)](https://github.com/PKU-YuanGroup/UniWorld-V1/pulls)
38
+ [![GitHub issues](https://img.shields.io/github/issues/PKU-YuanGroup/UniWorld-V1?color=critical&label=Issues)](https://github.com/PKU-YuanGroup/UniWorld-V1/issues?q=is%3Aopen+is%3Aissue)
39
+ [![GitHub closed issues](https://img.shields.io/github/issues-closed/PKU-YuanGroup/UniWorld-V1?color=success&label=Issues)](https://github.com/PKU-YuanGroup/UniWorld-V1/issues?q=is%3Aissue+is%3Aclosed)
40
+ </h5>
41
+
42
+
43
+
44
+ # 📣 News
45
+
46
+ * **[2025.06.03]** 🤗 We release UniWorld, a unified framework for understanding, generation, and editing. All [data](https://huggingface.co/datasets/LanguageBind/UniWorld-V1), [models](https://huggingface.co/LanguageBind/UniWorld-V1), [training code](https://github.com/PKU-YuanGroup/UniWorld-V1?tab=readme-ov-file#%EF%B8%8F-training), and [evaluation code](https://github.com/PKU-YuanGroup/UniWorld-V1?tab=readme-ov-file#%EF%B8%8F-evaluation) are open-sourced. Checking our [report](https://github.com/user-attachments/files/20573816/report.pdf) for more details. Welcome to **watch** 👀 this repository for the latest updates.
47
+
48
+
49
+ # 😍 Gallery
50
+
51
+ UniWorld shows excellent performance in **20+** tasks.
52
+
53
+ UniWorld, trained on only 2.7M samples, consistently outperforms [BAGEL](https://github.com/ByteDance-Seed/Bagel) (trained on 2665M samples) on the ImgEdit-Bench for image manipulation. It also surpasses the specialized image editing model [Step1X-Edit](https://github.com/stepfun-ai/Step1X-Edit) across multiple dimensions, including add, adjust, and extract on ImgEdit-Bench.
54
+
55
+ **Click to play**
56
+
57
+ <p align="left">
58
+ <a href="https://www.youtube.com/watch?v=77U0PKH7uxs" target="_blank">
59
+ <img src="https://github.com/user-attachments/assets/dbb2acf7-3a54-44b5-9bca-b30cb3385056" width="850" style="margin-bottom: 0.2;"/>
60
+ </a>
61
+ </p>
62
+
63
+
64
+ <p align="left">
65
+ <img src="https://s21.ax1x.com/2025/06/03/pVCB6ln.png" width="850" style="margin-bottom: 0.2;"/>
66
+ <p>
67
+
68
+ # 😮 Highlights
69
+
70
+ ### 1. All Resources Fully Open-Sourced
71
+ - We fully open-source the models, data, training and evaluation code to facilitate rapid community exploration of unified architectures.
72
+
73
+ - We curate 10+ CV downstream tasks, including canny, depth, sketch, MLSD, segmentation and so on.
74
+
75
+ - We annotate 286K long-caption samples using [Qwen2-VL-72B](https://huggingface.co/Qwen/Qwen2-VL-72B-Instruct). We use GPT-4o to filter [ImgEdit](https://github.com/PKU-YuanGroup/ImgEdit), result in 724K high-quality editing samples (all shortedge ≥ 1024 pix). Additionally, we organize and filter existing open-sourced datasets. The details can be found [here](https://github.com/PKU-YuanGroup/UniWorld/tree/main?tab=readme-ov-file#data-details).
76
+
77
+ ### 2. Contrastive Semantic Encoders as Reference Control Signals
78
+ - Unlike prior approaches that use VAE-encoded reference images for low-level control, we advocate using contrastive visual encoders as control signals for reference images.
79
+
80
+ - For such encoders, we observe that as resolution increases, global features approach saturation and model capacity shifts toward preserving fine details, which is crucial for maintaining fidelity in non-edited regions.
81
+
82
+ ### 3. Image Priors via VLM Encoding Without Learnable Tokens
83
+
84
+ - We find that multimodal features encoded by VLMs can interpret instructions while retaining image priors. Due to causal attention, the format `<instruction><image>` is particularly important.
85
+
86
+
87
+ <p align="left">
88
+ <img src="https://s21.ax1x.com/2025/06/03/pVCB5Y4.jpg" width="850" style="margin-bottom: 0.2;"/>
89
+ <p>
90
+
91
+ # 🤗 Demo
92
+
93
+ ### Gradio Web UI
94
+
95
+ Highly recommend trying out our web demo by the following command.
96
+
97
+ ```bash
98
+ MODEL_PATH="path/to/model"
99
+ FLUX_PATH="path/to/flux"
100
+ SIGLIP_PATH="path/to/siglip"
101
+ CUDA_VISIBLE_DEVICES=0 python -m univa.serve.gradio_web_server \
102
+ --model_path ${MODEL_PATH} \
103
+ --flux_path ${FLUX_PATH} \
104
+ --siglip_path ${SIGLIP_PATH}
105
+ ```
106
+
107
+ ### CLI Inference
108
+
109
+ ```bash
110
+ MODEL_PATH="path/to/model"
111
+ FLUX_PATH="path/to/flux"
112
+ SIGLIP_PATH="path/to/siglip"
113
+ CUDA_VISIBLE_DEVICES=1 python -m univa.serve.cli \
114
+ --model_path ${MODEL_PATH} \
115
+ --flux_path ${FLUX_PATH} \
116
+ --siglip_path ${SIGLIP_PATH}
117
+ ```
118
+
119
+ ### ComfyUI
120
+
121
+ Coming soon...
122
+
123
+ # ⚙️ Requirements and Installation
124
+
125
+ 1. Clone this repository and navigate to UniWorld folder
126
+ ```
127
+ git clone https://github.com/PKU-YuanGroup/UniWorld
128
+ cd UniWorld
129
+ ```
130
+ 2. Install required packages
131
+
132
+ ```
133
+ conda create -n univa python=3.10 -y
134
+ conda activate univa
135
+ pip install -r requirements.txt
136
+ ```
137
+
138
+ # 🗝️ Training
139
+
140
+ ### Data preparation
141
+
142
+ Download the data from [LanguageBind/UniWorld-V1](https://huggingface.co/datasets/LanguageBind/UniWorld-V1). The dataset consists of two parts: source images and annotation JSON files.
143
+
144
+ Prepare a `data.txt` file in the following format:
145
+
146
+ 1. The first column is the root path to the image.
147
+
148
+ 2. The second column is the corresponding annotation JSON file.
149
+
150
+ 3. The third column indicates whether to enable the region-weighting strategy. We recommend setting it to True for edited data and False for others.
151
+
152
+ ```
153
+ data/BLIP3o-60k,json/blip3o_t2i_58859.json,false
154
+ data/coco2017_caption_canny-236k,coco2017_canny_236574.json,false
155
+ data/imgedit,json/imgedit/laion_add_part0_edit.json,true
156
+ ```
157
+
158
+ We provide a simple online verification tool to check whether your paths are set in `data.txt` correctly.
159
+ ```
160
+ python univa/serve/check_data.py
161
+ ```
162
+
163
+ <p align="left">
164
+ <img src="https://s21.ax1x.com/2025/05/30/pV9iP8f.png" width="850" style="margin-bottom: 0.2;"/>
165
+ <p>
166
+
167
+ ### Data details
168
+
169
+ <details><summary>Text-to-Image Generation</summary><p>
170
+
171
+ - [BLIP3o-60k](https://huggingface.co/datasets/BLIP3o/BLIP3o-60k): We add text-to-image instructions to half of the data. [108 GB storage usage.]
172
+ - [OSP1024-286k](https://huggingface.co/datasets/LanguageBind/UniWorld-V1/tree/main/data/OSP1024-286k): Sourced from internal data of the [Open-Sora Plan](https://github.com/PKU-YuanGroup/Open-Sora-Plan), with captions generated using [Qwen2-VL-72B](https://huggingface.co/Qwen/Qwen2-VL-72B-Instruct). Images have an aspect ratio between 3:4 and 4:3, aesthetic score ≥ 6, and a short side ≥ 1024 pixels. [326 GB storage usage.]
173
+
174
+ </p></details>
175
+
176
+ <details><summary>Image Editing</summary><p>
177
+
178
+ - [imgedit-724k](https://huggingface.co/datasets/sysuyy/ImgEdit/tree/main): Data is filtered using GPT-4o, retaining approximately half. [2.1T storage usage.]
179
+ - [OmniEdit-368k](https://huggingface.co/datasets/TIGER-Lab/OmniEdit-Filtered-1.2M): For image editing data, samples with edited regions smaller than 1/100 were filtered out; images have a short side ≥ 1024 pixels. [204 GB storage usage.]
180
+ - [SEED-Data-Edit-Part1-Openimages-65k](https://huggingface.co/datasets/AILab-CVC/SEED-Data-Edit-Part1-Openimages): For image editing data, samples with edited regions smaller than 1/100 were filtered out. Images have a short side ≥ 1024 pixels. [10 GB storage usage.]
181
+ - [SEED-Data-Edit-Part2-3-12k](https://huggingface.co/datasets/AILab-CVC/SEED-Data-Edit-Part2-3): For image editing data, samples with edited regions smaller than 1/100 were filtered out. Images have a short side ≥ 1024 pixels. [10 GB storage usage.]
182
+ - [PromptfixData-18k](https://huggingface.co/datasets/yeates/PromptfixData): For image restoration data and some editing data, samples with edited regions smaller than 1/100 were filtered out. Images have a short side ≥ 1024 pixels. [9 GB storage usage.]
183
+ - [StyleBooth-11k](https://huggingface.co/scepter-studio/stylebooth): For transfer style data, images have a short side ≥ 1024 pixels. [4 GB storage usage.]
184
+ - [Ghibli-36k](https://huggingface.co/datasets/LanguageBind/UniWorld-V1/tree/main/data/Ghibli-36k): For transfer style data, images have a short side ≥ 1024 pixels. **Warning: This data has not been quality filtered.** [170 GB storage usage.]
185
+ </p></details>
186
+
187
+ <details><summary>Extract & Try-on</summary><p>
188
+
189
+ - [viton_hd-23k](https://huggingface.co/datasets/forgeml/viton_hd): Converted from the source data into an instruction dataset for product extraction. [1 GB storage usage.]
190
+ - [deepfashion-27k](https://huggingface.co/datasets/lirus18/deepfashion): Converted from the source data into an instruction dataset for product extraction. [1 GB storage usage.]
191
+ - [shop_product-23k](https://huggingface.co/datasets/LanguageBind/UniWorld-V1/tree/main/data/shop_product-23k): Sourced from internal data of the [Open-Sora Plan](https://github.com/PKU-YuanGroup/Open-Sora-Plan), focusing on product extraction and virtual try-on, with images having a short side ≥ 1024 pixels. [12 GB storage usage.]
192
+
193
+ </p></details>
194
+
195
+ <details><summary>Image Perception</summary><p>
196
+
197
+ - [coco2017_caption_canny-236k](https://huggingface.co/datasets/gebinhui/coco2017_caption_canny): img->canny & canny->img [25 GB storage usage.]
198
+ - [coco2017_caption_depth-236k](https://huggingface.co/datasets/gebinhui/coco2017_caption_depth): img->depth & depth->img [8 GB storage usage.]
199
+ - [coco2017_caption_hed-236k](https://huggingface.co/datasets/gebinhui/coco2017_caption_hed): img->hed & hed->img [13 GB storage usage.]
200
+ - [coco2017_caption_mlsd-236k](https://huggingface.co/datasets/gebinhui/coco2017_caption_mlsd): img->mlsd & mlsd->img [ GB storage usage.]
201
+ - [coco2017_caption_normal-236k](https://huggingface.co/datasets/gebinhui/coco2017_caption_normal): img->normal & normal->img [10 GB storage usage.]
202
+ - [coco2017_caption_openpose-62k](https://huggingface.co/datasets/wangherr/coco2017_caption_openpose): img->pose & pose->img [2 GB storage usage.]
203
+ - [coco2017_caption_sketch-236k](https://huggingface.co/datasets/wangherr/coco2017_caption_sketch): img->sketch & sketch->img [15 GB storage usage.]
204
+ - [unsplash_canny-20k](https://huggingface.co/datasets/wtcherr/unsplash_10k_canny): img->canny & canny->img [2 GB storage usage.]
205
+ - [open_pose-40k](https://huggingface.co/datasets/raulc0399/open_pose_controlnet): img->pose & pose->img [4 GB storage usage.]
206
+ - [mscoco-controlnet-canny-less-colors-236k](https://huggingface.co/datasets/hazal-karakus/mscoco-controlnet-canny-less-colors): img->canny & canny->img [13 GB storage usage.]
207
+ - [coco2017_seg_box-448k](https://huggingface.co/datasets/LanguageBind/UniWorld-V1/tree/main/data/coco2017_seg_box-448k): img->detection & img->segmentation (mask), instances with regions smaller than 1/100 were filtered out. We visualise masks on the original image as gt-image. [39 GB storage usage.]
208
+ - [viton_hd-11k](https://huggingface.co/datasets/forgeml/viton_hd): img->pose [1 GB storage usage.]
209
+ - [deepfashion-13k](https://huggingface.co/datasets/lirus18/deepfashion): img->pose [1 GB storage usage.]
210
+
211
+ </p></details>
212
+
213
+
214
+ ### Training
215
+
216
+ #### Prepare pretrained weights
217
+ Download [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev) to `$FLUX_PATH`.
218
+ Download [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) to `$QWENVL_PATH`. We also support other sizes of Qwen2.5-VL.
219
+
220
+ ```
221
+ SAVE_PATH="path/to/save/UniWorld-Qwen2.5-VL-7B-Instruct-FLUX.1-dev-fp32"
222
+ python scripts/make_univa_qwen2p5vl_weight.py \
223
+ --origin_flux_ckpt_path $FLUX_PATH \
224
+ --origin_qwenvl_ckpt_path $QWENVL_PATH \
225
+ --save_path ${SAVE_PATH}
226
+ ```
227
+
228
+ ```
229
+ # stage1
230
+ bash scripts/denoiser/flux_qwen2p5vl_7b_vlm_stage1_512.sh
231
+ ```
232
+
233
+ Download [flux-redux-siglipv2-512.bin](https://huggingface.co/LanguageBind/UniWorld-V1/resolve/main/flux-redux-siglipv2-512.bin?download=true) and set its path to `pretrained_siglip_mlp_path` in `stage2.yaml`. The weight is sourced from [ostris/Flex.1-alpha-Redux](https://huggingface.co/ostris/Flex.1-alpha-Redux), we just re-organize the weight.
234
+ ```
235
+ # stage2
236
+ bash scripts/denoiser/flux_qwen2p5vl_7b_vlm_stage2_512.sh
237
+ ```
238
+
239
+ # ⚡️ Evaluation
240
+
241
+ ### Text-to-Image Generation
242
+
243
+ <details><summary>GenEval</summary><p>
244
+
245
+ ```
246
+ cd univa/eval/geneval
247
+ # follow the instruction in univa/eval/geneval/README.md
248
+ ```
249
+ </p></details>
250
+
251
+ <details><summary>WISE</summary><p>
252
+
253
+ ```
254
+ cd univa/eval/wise
255
+ # follow the instruction in univa/eval/wise/README.md
256
+ ```
257
+
258
+ </p></details>
259
+
260
+ <details><summary>GenAI-Bench</summary><p>
261
+
262
+ ```
263
+ cd univa/eval/genai
264
+ # follow the instruction in univa/eval/genai/README.md
265
+ ```
266
+
267
+ </p></details>
268
+
269
+ <details><summary>DPG-Bench</summary><p>
270
+
271
+ ```
272
+ cd univa/eval/dpgbench
273
+ # follow the instruction in univa/eval/dpgbench/README.md
274
+ ```
275
+
276
+ </p></details>
277
+
278
+ ### Image Editing
279
+
280
+ <details><summary>ImgEdit</summary><p>
281
+
282
+ ```
283
+ cd univa/eval/imgedit
284
+ # follow the instruction in univa/eval/imgedit/README.md
285
+ ```
286
+
287
+ </p></details>
288
+
289
+ <details><summary>GEdit</summary><p>
290
+
291
+ ```
292
+ cd univa/eval/gdit
293
+ # follow the instruction in univa/eval/gdit/README.md
294
+ ```
295
+
296
+ </p></details>
297
+
298
+ # 📊 Benchmarks
299
+
300
+
301
+
302
+ <p align="left">
303
+ <img src="https://s21.ax1x.com/2025/06/03/pVPFuTJ.png" width="850" style="margin-bottom: 0.2;"/>
304
+ <p>
305
+
306
+
307
+ # 💡 How to Contribute
308
+ We greatly appreciate your contributions to the UniWorld open-source community and helping us make it even better than it is now!
309
+
310
+ For more details, please refer to the [Contribution Guidelines](docs/Contribution_Guidelines.md).
311
+
312
+ # 👍 Acknowledgement and Related Work
313
+ * [ImgEdit](https://github.com/PKU-YuanGroup/ImgEdit): ImgEdit is a large-scale, high-quality image-editing dataset comprising 1.2 million carefully curated edit pairs.
314
+ * [Open-Sora Plan](https://github.com/PKU-YuanGroup/Open-Sora-Plan): An open‑source text-to-image/video foundation model, which provides a lot of caption data.
315
+ * [SEED-Data-Edit](https://huggingface.co/datasets/AILab-CVC/SEED-Data-Edit): A hybrid dataset for instruction-guided image editing.
316
+ * [Qwen2.5-VL](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct): The new flagship vision-language model of Qwen.
317
+ * [FLUX.1-Redux-dev](https://huggingface.co/black-forest-labs/FLUX.1-Redux-dev): Given an input image, FLUX.1 Redux can reproduce the image with slight variation, allowing to refine a given image.
318
+ * [SigLIP 2](https://github.com/google-research/big_vision/blob/main/big_vision/configs/proj/image_text/README_siglip2.md): New multilingual vision-language encoders.
319
+ * [Step1X-Edit](https://github.com/stepfun-ai/Step1X-Edit): A state-of-the-art image editing model.
320
+ * [BLIP3-o](https://github.com/JiuhaiChen/BLIP3o): A unified multimodal model that combines the reasoning and instruction following strength of autoregressive models with the generative power of diffusion models.
321
+ * [BAGEL](https://github.com/ByteDance-Seed/Bagel): An open‑source multimodal foundation model with 7B active parameters (14B total) trained on large‑scale interleaved multimodal data.
322
+
323
+
324
+ # 🔒 License
325
+ * See [LICENSE](LICENSE) for details.
326
+
327
+ ## ✨ Star History
328
+
329
+ [![Star History](https://api.star-history.com/svg?repos=PKU-YuanGroup/UniWorld)](https://star-history.com/#PKU-YuanGroup/UniWorld&Date)
330
+
331
+
332
+
333
+ # ✏️ Citing
334
+
335
+
336
+ ```bibtex
337
+ Coming soon
338
+ ```
339
+
340
+ <!-- ```bibtex
341
+ @article{lin2024open,
342
+ title={Open-Sora Plan: Open-Source Large Video Generation Model},
343
+ author={Lin, Bin and Ge, Yunyang and Cheng, Xinhua and Li, Zongjian and Zhu, Bin and Wang, Shaodong and He, Xianyi and Ye, Yang and Yuan, Shenghai and Chen, Liuhan and others},
344
+ journal={arXiv preprint arXiv:2412.00131},
345
+ year={2024}
346
+ }
347
+ ``` -->
348
+
349
+
350
+ # 🤝 Community contributors
351
+
352
+ <a href="https://github.com/PKU-YuanGroup/UniWorld-V1/graphs/contributors">
353
+ <img src="https://contrib.rocks/image?repo=PKU-YuanGroup/UniWorld-V1" />
354
+ </a>
355
+