Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,355 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
---
|
| 4 |
+
|
| 5 |
+
<p align="center">
|
| 6 |
+
<img src="https://s21.ax1x.com/2025/06/03/pVCBdw8.png" width="200"/>
|
| 7 |
+
<p>
|
| 8 |
+
<h2 align="center">
|
| 9 |
+
<a href="https://github.com/PKU-YuanGroup/UniWorld-V1/">
|
| 10 |
+
UniWorld: High-Resolution Semantic Encoders for <br> Unified Visual Understanding and Generation
|
| 11 |
+
</a>
|
| 12 |
+
</h2>
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
<h5 align="left">
|
| 17 |
+
|
| 18 |
+
[](https://github.com/user-attachments/files/20573816/report.pdf)
|
| 19 |
+
[](https://huggingface.co/LanguageBind/UniWorld-V1)
|
| 20 |
+
[](https://huggingface.co/datasets/LanguageBind/UniWorld-V1)
|
| 21 |
+
[](https://github.com/PKU-YuanGroup/UniWorld/blob/main/LICENSE)
|
| 22 |
+
[](https://x.com/LinBin46984/status/1929905024349679682) <br>
|
| 23 |
+
[](http://8.130.165.159:8800/)
|
| 24 |
+
[](http://8.130.165.159:8801/)
|
| 25 |
+
[](http://8.130.165.159:8802/)
|
| 26 |
+
[](http://8.130.165.159:8803/)
|
| 27 |
+
[](http://8.130.165.159:8804/)
|
| 28 |
+
[](http://8.130.165.159:8805/)
|
| 29 |
+
[](http://8.130.165.159:8806/)
|
| 30 |
+
[](http://8.130.165.159:8807/) <br>
|
| 31 |
+
[](https://github.com/PKU-YuanGroup/UniWorld-V1/stargazers) 
|
| 32 |
+
[](https://github.com/PKU-YuanGroup/UniWorld-V1/network) 
|
| 33 |
+
[](https://github.com/PKU-YuanGroup/UniWorld-V1/watchers) 
|
| 34 |
+
[](https://github.com/PKU-YuanGroup/UniWorld-V1/archive/refs/heads/main.zip) <br>
|
| 35 |
+
[](https://github.com/PKU-YuanGroup/UniWorld-V1/graphs/contributors)
|
| 36 |
+
[](https://github.com/PKU-YuanGroup/UniWorld-V1/commits/main/)
|
| 37 |
+
[](https://github.com/PKU-YuanGroup/UniWorld-V1/pulls)
|
| 38 |
+
[](https://github.com/PKU-YuanGroup/UniWorld-V1/issues?q=is%3Aopen+is%3Aissue)
|
| 39 |
+
[](https://github.com/PKU-YuanGroup/UniWorld-V1/issues?q=is%3Aissue+is%3Aclosed)
|
| 40 |
+
</h5>
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
# 📣 News
|
| 45 |
+
|
| 46 |
+
* **[2025.06.03]** 🤗 We release UniWorld, a unified framework for understanding, generation, and editing. All [data](https://huggingface.co/datasets/LanguageBind/UniWorld-V1), [models](https://huggingface.co/LanguageBind/UniWorld-V1), [training code](https://github.com/PKU-YuanGroup/UniWorld-V1?tab=readme-ov-file#%EF%B8%8F-training), and [evaluation code](https://github.com/PKU-YuanGroup/UniWorld-V1?tab=readme-ov-file#%EF%B8%8F-evaluation) are open-sourced. Checking our [report](https://github.com/user-attachments/files/20573816/report.pdf) for more details. Welcome to **watch** 👀 this repository for the latest updates.
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
# 😍 Gallery
|
| 50 |
+
|
| 51 |
+
UniWorld shows excellent performance in **20+** tasks.
|
| 52 |
+
|
| 53 |
+
UniWorld, trained on only 2.7M samples, consistently outperforms [BAGEL](https://github.com/ByteDance-Seed/Bagel) (trained on 2665M samples) on the ImgEdit-Bench for image manipulation. It also surpasses the specialized image editing model [Step1X-Edit](https://github.com/stepfun-ai/Step1X-Edit) across multiple dimensions, including add, adjust, and extract on ImgEdit-Bench.
|
| 54 |
+
|
| 55 |
+
**Click to play**
|
| 56 |
+
|
| 57 |
+
<p align="left">
|
| 58 |
+
<a href="https://www.youtube.com/watch?v=77U0PKH7uxs" target="_blank">
|
| 59 |
+
<img src="https://github.com/user-attachments/assets/dbb2acf7-3a54-44b5-9bca-b30cb3385056" width="850" style="margin-bottom: 0.2;"/>
|
| 60 |
+
</a>
|
| 61 |
+
</p>
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
<p align="left">
|
| 65 |
+
<img src="https://s21.ax1x.com/2025/06/03/pVCB6ln.png" width="850" style="margin-bottom: 0.2;"/>
|
| 66 |
+
<p>
|
| 67 |
+
|
| 68 |
+
# 😮 Highlights
|
| 69 |
+
|
| 70 |
+
### 1. All Resources Fully Open-Sourced
|
| 71 |
+
- We fully open-source the models, data, training and evaluation code to facilitate rapid community exploration of unified architectures.
|
| 72 |
+
|
| 73 |
+
- We curate 10+ CV downstream tasks, including canny, depth, sketch, MLSD, segmentation and so on.
|
| 74 |
+
|
| 75 |
+
- We annotate 286K long-caption samples using [Qwen2-VL-72B](https://huggingface.co/Qwen/Qwen2-VL-72B-Instruct). We use GPT-4o to filter [ImgEdit](https://github.com/PKU-YuanGroup/ImgEdit), result in 724K high-quality editing samples (all shortedge ≥ 1024 pix). Additionally, we organize and filter existing open-sourced datasets. The details can be found [here](https://github.com/PKU-YuanGroup/UniWorld/tree/main?tab=readme-ov-file#data-details).
|
| 76 |
+
|
| 77 |
+
### 2. Contrastive Semantic Encoders as Reference Control Signals
|
| 78 |
+
- Unlike prior approaches that use VAE-encoded reference images for low-level control, we advocate using contrastive visual encoders as control signals for reference images.
|
| 79 |
+
|
| 80 |
+
- For such encoders, we observe that as resolution increases, global features approach saturation and model capacity shifts toward preserving fine details, which is crucial for maintaining fidelity in non-edited regions.
|
| 81 |
+
|
| 82 |
+
### 3. Image Priors via VLM Encoding Without Learnable Tokens
|
| 83 |
+
|
| 84 |
+
- We find that multimodal features encoded by VLMs can interpret instructions while retaining image priors. Due to causal attention, the format `<instruction><image>` is particularly important.
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
<p align="left">
|
| 88 |
+
<img src="https://s21.ax1x.com/2025/06/03/pVCB5Y4.jpg" width="850" style="margin-bottom: 0.2;"/>
|
| 89 |
+
<p>
|
| 90 |
+
|
| 91 |
+
# 🤗 Demo
|
| 92 |
+
|
| 93 |
+
### Gradio Web UI
|
| 94 |
+
|
| 95 |
+
Highly recommend trying out our web demo by the following command.
|
| 96 |
+
|
| 97 |
+
```bash
|
| 98 |
+
MODEL_PATH="path/to/model"
|
| 99 |
+
FLUX_PATH="path/to/flux"
|
| 100 |
+
SIGLIP_PATH="path/to/siglip"
|
| 101 |
+
CUDA_VISIBLE_DEVICES=0 python -m univa.serve.gradio_web_server \
|
| 102 |
+
--model_path ${MODEL_PATH} \
|
| 103 |
+
--flux_path ${FLUX_PATH} \
|
| 104 |
+
--siglip_path ${SIGLIP_PATH}
|
| 105 |
+
```
|
| 106 |
+
|
| 107 |
+
### CLI Inference
|
| 108 |
+
|
| 109 |
+
```bash
|
| 110 |
+
MODEL_PATH="path/to/model"
|
| 111 |
+
FLUX_PATH="path/to/flux"
|
| 112 |
+
SIGLIP_PATH="path/to/siglip"
|
| 113 |
+
CUDA_VISIBLE_DEVICES=1 python -m univa.serve.cli \
|
| 114 |
+
--model_path ${MODEL_PATH} \
|
| 115 |
+
--flux_path ${FLUX_PATH} \
|
| 116 |
+
--siglip_path ${SIGLIP_PATH}
|
| 117 |
+
```
|
| 118 |
+
|
| 119 |
+
### ComfyUI
|
| 120 |
+
|
| 121 |
+
Coming soon...
|
| 122 |
+
|
| 123 |
+
# ⚙️ Requirements and Installation
|
| 124 |
+
|
| 125 |
+
1. Clone this repository and navigate to UniWorld folder
|
| 126 |
+
```
|
| 127 |
+
git clone https://github.com/PKU-YuanGroup/UniWorld
|
| 128 |
+
cd UniWorld
|
| 129 |
+
```
|
| 130 |
+
2. Install required packages
|
| 131 |
+
|
| 132 |
+
```
|
| 133 |
+
conda create -n univa python=3.10 -y
|
| 134 |
+
conda activate univa
|
| 135 |
+
pip install -r requirements.txt
|
| 136 |
+
```
|
| 137 |
+
|
| 138 |
+
# 🗝️ Training
|
| 139 |
+
|
| 140 |
+
### Data preparation
|
| 141 |
+
|
| 142 |
+
Download the data from [LanguageBind/UniWorld-V1](https://huggingface.co/datasets/LanguageBind/UniWorld-V1). The dataset consists of two parts: source images and annotation JSON files.
|
| 143 |
+
|
| 144 |
+
Prepare a `data.txt` file in the following format:
|
| 145 |
+
|
| 146 |
+
1. The first column is the root path to the image.
|
| 147 |
+
|
| 148 |
+
2. The second column is the corresponding annotation JSON file.
|
| 149 |
+
|
| 150 |
+
3. The third column indicates whether to enable the region-weighting strategy. We recommend setting it to True for edited data and False for others.
|
| 151 |
+
|
| 152 |
+
```
|
| 153 |
+
data/BLIP3o-60k,json/blip3o_t2i_58859.json,false
|
| 154 |
+
data/coco2017_caption_canny-236k,coco2017_canny_236574.json,false
|
| 155 |
+
data/imgedit,json/imgedit/laion_add_part0_edit.json,true
|
| 156 |
+
```
|
| 157 |
+
|
| 158 |
+
We provide a simple online verification tool to check whether your paths are set in `data.txt` correctly.
|
| 159 |
+
```
|
| 160 |
+
python univa/serve/check_data.py
|
| 161 |
+
```
|
| 162 |
+
|
| 163 |
+
<p align="left">
|
| 164 |
+
<img src="https://s21.ax1x.com/2025/05/30/pV9iP8f.png" width="850" style="margin-bottom: 0.2;"/>
|
| 165 |
+
<p>
|
| 166 |
+
|
| 167 |
+
### Data details
|
| 168 |
+
|
| 169 |
+
<details><summary>Text-to-Image Generation</summary><p>
|
| 170 |
+
|
| 171 |
+
- [BLIP3o-60k](https://huggingface.co/datasets/BLIP3o/BLIP3o-60k): We add text-to-image instructions to half of the data. [108 GB storage usage.]
|
| 172 |
+
- [OSP1024-286k](https://huggingface.co/datasets/LanguageBind/UniWorld-V1/tree/main/data/OSP1024-286k): Sourced from internal data of the [Open-Sora Plan](https://github.com/PKU-YuanGroup/Open-Sora-Plan), with captions generated using [Qwen2-VL-72B](https://huggingface.co/Qwen/Qwen2-VL-72B-Instruct). Images have an aspect ratio between 3:4 and 4:3, aesthetic score ≥ 6, and a short side ≥ 1024 pixels. [326 GB storage usage.]
|
| 173 |
+
|
| 174 |
+
</p></details>
|
| 175 |
+
|
| 176 |
+
<details><summary>Image Editing</summary><p>
|
| 177 |
+
|
| 178 |
+
- [imgedit-724k](https://huggingface.co/datasets/sysuyy/ImgEdit/tree/main): Data is filtered using GPT-4o, retaining approximately half. [2.1T storage usage.]
|
| 179 |
+
- [OmniEdit-368k](https://huggingface.co/datasets/TIGER-Lab/OmniEdit-Filtered-1.2M): For image editing data, samples with edited regions smaller than 1/100 were filtered out; images have a short side ≥ 1024 pixels. [204 GB storage usage.]
|
| 180 |
+
- [SEED-Data-Edit-Part1-Openimages-65k](https://huggingface.co/datasets/AILab-CVC/SEED-Data-Edit-Part1-Openimages): For image editing data, samples with edited regions smaller than 1/100 were filtered out. Images have a short side ≥ 1024 pixels. [10 GB storage usage.]
|
| 181 |
+
- [SEED-Data-Edit-Part2-3-12k](https://huggingface.co/datasets/AILab-CVC/SEED-Data-Edit-Part2-3): For image editing data, samples with edited regions smaller than 1/100 were filtered out. Images have a short side ≥ 1024 pixels. [10 GB storage usage.]
|
| 182 |
+
- [PromptfixData-18k](https://huggingface.co/datasets/yeates/PromptfixData): For image restoration data and some editing data, samples with edited regions smaller than 1/100 were filtered out. Images have a short side ≥ 1024 pixels. [9 GB storage usage.]
|
| 183 |
+
- [StyleBooth-11k](https://huggingface.co/scepter-studio/stylebooth): For transfer style data, images have a short side ≥ 1024 pixels. [4 GB storage usage.]
|
| 184 |
+
- [Ghibli-36k](https://huggingface.co/datasets/LanguageBind/UniWorld-V1/tree/main/data/Ghibli-36k): For transfer style data, images have a short side ≥ 1024 pixels. **Warning: This data has not been quality filtered.** [170 GB storage usage.]
|
| 185 |
+
</p></details>
|
| 186 |
+
|
| 187 |
+
<details><summary>Extract & Try-on</summary><p>
|
| 188 |
+
|
| 189 |
+
- [viton_hd-23k](https://huggingface.co/datasets/forgeml/viton_hd): Converted from the source data into an instruction dataset for product extraction. [1 GB storage usage.]
|
| 190 |
+
- [deepfashion-27k](https://huggingface.co/datasets/lirus18/deepfashion): Converted from the source data into an instruction dataset for product extraction. [1 GB storage usage.]
|
| 191 |
+
- [shop_product-23k](https://huggingface.co/datasets/LanguageBind/UniWorld-V1/tree/main/data/shop_product-23k): Sourced from internal data of the [Open-Sora Plan](https://github.com/PKU-YuanGroup/Open-Sora-Plan), focusing on product extraction and virtual try-on, with images having a short side ≥ 1024 pixels. [12 GB storage usage.]
|
| 192 |
+
|
| 193 |
+
</p></details>
|
| 194 |
+
|
| 195 |
+
<details><summary>Image Perception</summary><p>
|
| 196 |
+
|
| 197 |
+
- [coco2017_caption_canny-236k](https://huggingface.co/datasets/gebinhui/coco2017_caption_canny): img->canny & canny->img [25 GB storage usage.]
|
| 198 |
+
- [coco2017_caption_depth-236k](https://huggingface.co/datasets/gebinhui/coco2017_caption_depth): img->depth & depth->img [8 GB storage usage.]
|
| 199 |
+
- [coco2017_caption_hed-236k](https://huggingface.co/datasets/gebinhui/coco2017_caption_hed): img->hed & hed->img [13 GB storage usage.]
|
| 200 |
+
- [coco2017_caption_mlsd-236k](https://huggingface.co/datasets/gebinhui/coco2017_caption_mlsd): img->mlsd & mlsd->img [ GB storage usage.]
|
| 201 |
+
- [coco2017_caption_normal-236k](https://huggingface.co/datasets/gebinhui/coco2017_caption_normal): img->normal & normal->img [10 GB storage usage.]
|
| 202 |
+
- [coco2017_caption_openpose-62k](https://huggingface.co/datasets/wangherr/coco2017_caption_openpose): img->pose & pose->img [2 GB storage usage.]
|
| 203 |
+
- [coco2017_caption_sketch-236k](https://huggingface.co/datasets/wangherr/coco2017_caption_sketch): img->sketch & sketch->img [15 GB storage usage.]
|
| 204 |
+
- [unsplash_canny-20k](https://huggingface.co/datasets/wtcherr/unsplash_10k_canny): img->canny & canny->img [2 GB storage usage.]
|
| 205 |
+
- [open_pose-40k](https://huggingface.co/datasets/raulc0399/open_pose_controlnet): img->pose & pose->img [4 GB storage usage.]
|
| 206 |
+
- [mscoco-controlnet-canny-less-colors-236k](https://huggingface.co/datasets/hazal-karakus/mscoco-controlnet-canny-less-colors): img->canny & canny->img [13 GB storage usage.]
|
| 207 |
+
- [coco2017_seg_box-448k](https://huggingface.co/datasets/LanguageBind/UniWorld-V1/tree/main/data/coco2017_seg_box-448k): img->detection & img->segmentation (mask), instances with regions smaller than 1/100 were filtered out. We visualise masks on the original image as gt-image. [39 GB storage usage.]
|
| 208 |
+
- [viton_hd-11k](https://huggingface.co/datasets/forgeml/viton_hd): img->pose [1 GB storage usage.]
|
| 209 |
+
- [deepfashion-13k](https://huggingface.co/datasets/lirus18/deepfashion): img->pose [1 GB storage usage.]
|
| 210 |
+
|
| 211 |
+
</p></details>
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
### Training
|
| 215 |
+
|
| 216 |
+
#### Prepare pretrained weights
|
| 217 |
+
Download [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev) to `$FLUX_PATH`.
|
| 218 |
+
Download [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) to `$QWENVL_PATH`. We also support other sizes of Qwen2.5-VL.
|
| 219 |
+
|
| 220 |
+
```
|
| 221 |
+
SAVE_PATH="path/to/save/UniWorld-Qwen2.5-VL-7B-Instruct-FLUX.1-dev-fp32"
|
| 222 |
+
python scripts/make_univa_qwen2p5vl_weight.py \
|
| 223 |
+
--origin_flux_ckpt_path $FLUX_PATH \
|
| 224 |
+
--origin_qwenvl_ckpt_path $QWENVL_PATH \
|
| 225 |
+
--save_path ${SAVE_PATH}
|
| 226 |
+
```
|
| 227 |
+
|
| 228 |
+
```
|
| 229 |
+
# stage1
|
| 230 |
+
bash scripts/denoiser/flux_qwen2p5vl_7b_vlm_stage1_512.sh
|
| 231 |
+
```
|
| 232 |
+
|
| 233 |
+
Download [flux-redux-siglipv2-512.bin](https://huggingface.co/LanguageBind/UniWorld-V1/resolve/main/flux-redux-siglipv2-512.bin?download=true) and set its path to `pretrained_siglip_mlp_path` in `stage2.yaml`. The weight is sourced from [ostris/Flex.1-alpha-Redux](https://huggingface.co/ostris/Flex.1-alpha-Redux), we just re-organize the weight.
|
| 234 |
+
```
|
| 235 |
+
# stage2
|
| 236 |
+
bash scripts/denoiser/flux_qwen2p5vl_7b_vlm_stage2_512.sh
|
| 237 |
+
```
|
| 238 |
+
|
| 239 |
+
# ⚡️ Evaluation
|
| 240 |
+
|
| 241 |
+
### Text-to-Image Generation
|
| 242 |
+
|
| 243 |
+
<details><summary>GenEval</summary><p>
|
| 244 |
+
|
| 245 |
+
```
|
| 246 |
+
cd univa/eval/geneval
|
| 247 |
+
# follow the instruction in univa/eval/geneval/README.md
|
| 248 |
+
```
|
| 249 |
+
</p></details>
|
| 250 |
+
|
| 251 |
+
<details><summary>WISE</summary><p>
|
| 252 |
+
|
| 253 |
+
```
|
| 254 |
+
cd univa/eval/wise
|
| 255 |
+
# follow the instruction in univa/eval/wise/README.md
|
| 256 |
+
```
|
| 257 |
+
|
| 258 |
+
</p></details>
|
| 259 |
+
|
| 260 |
+
<details><summary>GenAI-Bench</summary><p>
|
| 261 |
+
|
| 262 |
+
```
|
| 263 |
+
cd univa/eval/genai
|
| 264 |
+
# follow the instruction in univa/eval/genai/README.md
|
| 265 |
+
```
|
| 266 |
+
|
| 267 |
+
</p></details>
|
| 268 |
+
|
| 269 |
+
<details><summary>DPG-Bench</summary><p>
|
| 270 |
+
|
| 271 |
+
```
|
| 272 |
+
cd univa/eval/dpgbench
|
| 273 |
+
# follow the instruction in univa/eval/dpgbench/README.md
|
| 274 |
+
```
|
| 275 |
+
|
| 276 |
+
</p></details>
|
| 277 |
+
|
| 278 |
+
### Image Editing
|
| 279 |
+
|
| 280 |
+
<details><summary>ImgEdit</summary><p>
|
| 281 |
+
|
| 282 |
+
```
|
| 283 |
+
cd univa/eval/imgedit
|
| 284 |
+
# follow the instruction in univa/eval/imgedit/README.md
|
| 285 |
+
```
|
| 286 |
+
|
| 287 |
+
</p></details>
|
| 288 |
+
|
| 289 |
+
<details><summary>GEdit</summary><p>
|
| 290 |
+
|
| 291 |
+
```
|
| 292 |
+
cd univa/eval/gdit
|
| 293 |
+
# follow the instruction in univa/eval/gdit/README.md
|
| 294 |
+
```
|
| 295 |
+
|
| 296 |
+
</p></details>
|
| 297 |
+
|
| 298 |
+
# 📊 Benchmarks
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
<p align="left">
|
| 303 |
+
<img src="https://s21.ax1x.com/2025/06/03/pVPFuTJ.png" width="850" style="margin-bottom: 0.2;"/>
|
| 304 |
+
<p>
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
# 💡 How to Contribute
|
| 308 |
+
We greatly appreciate your contributions to the UniWorld open-source community and helping us make it even better than it is now!
|
| 309 |
+
|
| 310 |
+
For more details, please refer to the [Contribution Guidelines](docs/Contribution_Guidelines.md).
|
| 311 |
+
|
| 312 |
+
# 👍 Acknowledgement and Related Work
|
| 313 |
+
* [ImgEdit](https://github.com/PKU-YuanGroup/ImgEdit): ImgEdit is a large-scale, high-quality image-editing dataset comprising 1.2 million carefully curated edit pairs.
|
| 314 |
+
* [Open-Sora Plan](https://github.com/PKU-YuanGroup/Open-Sora-Plan): An open‑source text-to-image/video foundation model, which provides a lot of caption data.
|
| 315 |
+
* [SEED-Data-Edit](https://huggingface.co/datasets/AILab-CVC/SEED-Data-Edit): A hybrid dataset for instruction-guided image editing.
|
| 316 |
+
* [Qwen2.5-VL](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct): The new flagship vision-language model of Qwen.
|
| 317 |
+
* [FLUX.1-Redux-dev](https://huggingface.co/black-forest-labs/FLUX.1-Redux-dev): Given an input image, FLUX.1 Redux can reproduce the image with slight variation, allowing to refine a given image.
|
| 318 |
+
* [SigLIP 2](https://github.com/google-research/big_vision/blob/main/big_vision/configs/proj/image_text/README_siglip2.md): New multilingual vision-language encoders.
|
| 319 |
+
* [Step1X-Edit](https://github.com/stepfun-ai/Step1X-Edit): A state-of-the-art image editing model.
|
| 320 |
+
* [BLIP3-o](https://github.com/JiuhaiChen/BLIP3o): A unified multimodal model that combines the reasoning and instruction following strength of autoregressive models with the generative power of diffusion models.
|
| 321 |
+
* [BAGEL](https://github.com/ByteDance-Seed/Bagel): An open‑source multimodal foundation model with 7B active parameters (14B total) trained on large‑scale interleaved multimodal data.
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
# 🔒 License
|
| 325 |
+
* See [LICENSE](LICENSE) for details.
|
| 326 |
+
|
| 327 |
+
## ✨ Star History
|
| 328 |
+
|
| 329 |
+
[](https://star-history.com/#PKU-YuanGroup/UniWorld&Date)
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
# ✏️ Citing
|
| 334 |
+
|
| 335 |
+
|
| 336 |
+
```bibtex
|
| 337 |
+
Coming soon
|
| 338 |
+
```
|
| 339 |
+
|
| 340 |
+
<!-- ```bibtex
|
| 341 |
+
@article{lin2024open,
|
| 342 |
+
title={Open-Sora Plan: Open-Source Large Video Generation Model},
|
| 343 |
+
author={Lin, Bin and Ge, Yunyang and Cheng, Xinhua and Li, Zongjian and Zhu, Bin and Wang, Shaodong and He, Xianyi and Ye, Yang and Yuan, Shenghai and Chen, Liuhan and others},
|
| 344 |
+
journal={arXiv preprint arXiv:2412.00131},
|
| 345 |
+
year={2024}
|
| 346 |
+
}
|
| 347 |
+
``` -->
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
# 🤝 Community contributors
|
| 351 |
+
|
| 352 |
+
<a href="https://github.com/PKU-YuanGroup/UniWorld-V1/graphs/contributors">
|
| 353 |
+
<img src="https://contrib.rocks/image?repo=PKU-YuanGroup/UniWorld-V1" />
|
| 354 |
+
</a>
|
| 355 |
+
|