File size: 63,571 Bytes
797e7d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 |
---
language:
- en
- ar
- zh
- fr
- de
- ja
- ko
- es
tags:
- liquid
- lfm2
- edge
- ColBERT
- PyLate
- sentence-transformers
- sentence-similarity
- feature-extraction
pipeline_tag: sentence-similarity
library_name: PyLate
license: other
license_name: lfm1.0
license_link: LICENSE
metrics:
- MaxSim_accuracy@1
- MaxSim_accuracy@3
- MaxSim_accuracy@5
- MaxSim_accuracy@10
- MaxSim_precision@1
- MaxSim_precision@3
- MaxSim_precision@5
- MaxSim_precision@10
- MaxSim_recall@1
- MaxSim_recall@3
- MaxSim_recall@5
- MaxSim_recall@10
- MaxSim_ndcg@10
- MaxSim_mrr@10
- MaxSim_map@100
model-index:
- name: PyLate
results:
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoClimateFEVER
type: NanoClimateFEVER
metrics:
- type: MaxSim_accuracy@1
value: 0.4
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.52
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.64
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.8
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.4
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.20666666666666667
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.15600000000000003
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.11799999999999997
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.195
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.2733333333333334
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.31566666666666665
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.45899999999999996
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.38664978031372876
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.506095238095238
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.31298040075928324
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoDBPedia
type: NanoDBPedia
metrics:
- type: MaxSim_accuracy@1
value: 0.86
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.92
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.94
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.98
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.86
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.7
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.64
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.5660000000000001
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.12059669442306678
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.2074731836307263
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.28467782707772427
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.4182321427819297
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.7139105590461106
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.8975
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.5749525139913445
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoFEVER
type: NanoFEVER
metrics:
- type: MaxSim_accuracy@1
value: 0.96
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.98
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.98
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.98
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.96
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.3533333333333333
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.21599999999999994
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.10799999999999997
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.8966666666666667
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.9533333333333333
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.96
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.96
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.9494352279872394
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.9666666666666667
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.9396715796806541
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoFiQA2018
type: NanoFiQA2018
metrics:
- type: MaxSim_accuracy@1
value: 0.56
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.78
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.78
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.82
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.56
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.36
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.26
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.14799999999999996
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.34874603174603175
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.5375714285714286
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.584452380952381
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.6361984126984127
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.5909802936451645
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.6625000000000001
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.5325997234510657
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoHotpotQA
type: NanoHotpotQA
metrics:
- type: MaxSim_accuracy@1
value: 0.92
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.98
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 1.0
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 1.0
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.92
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.5599999999999999
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.35999999999999993
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.18799999999999997
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.46
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.84
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.9
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.94
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.8954853297530804
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.9540000000000001
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.8452079490557751
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: MaxSim_accuracy@1
value: 0.58
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.7
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.76
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.82
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.58
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.23333333333333336
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.15200000000000002
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.08199999999999999
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.58
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.7
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.76
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.82
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.6860512766453598
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.6444126984126984
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.6563222143353721
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoNFCorpus
type: NanoNFCorpus
metrics:
- type: MaxSim_accuracy@1
value: 0.5
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.6
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.66
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.7
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.5
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.3933333333333333
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.36400000000000005
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.29
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.06441975062397678
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.10314642255588413
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.1276571146817061
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.15217406670771688
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.37688958487118834
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.5655
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.18401289774934215
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: MaxSim_accuracy@1
value: 0.66
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.78
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.86
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.88
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.66
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.26666666666666666
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.184
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.09599999999999997
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.62
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.72
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.82
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.85
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.7462482063760048
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.7323333333333334
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.7080310107127462
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoQuoraRetrieval
type: NanoQuoraRetrieval
metrics:
- type: MaxSim_accuracy@1
value: 0.8
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.92
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.98
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 1.0
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.8
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.3666666666666666
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.23599999999999993
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.132
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.7106666666666667
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.8813333333333333
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.9346666666666666
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.9793333333333334
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.882106394646597
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.8631666666666666
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.8429613442113442
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoSCIDOCS
type: NanoSCIDOCS
metrics:
- type: MaxSim_accuracy@1
value: 0.5
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.68
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.76
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.86
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.5
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.3466666666666666
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.27599999999999997
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.18599999999999997
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.10566666666666666
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.21366666666666664
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.2826666666666667
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.38066666666666665
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.3835676640413774
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.6130555555555556
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.29746953473534715
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoArguAna
type: NanoArguAna
metrics:
- type: MaxSim_accuracy@1
value: 0.28
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.5
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.7
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.88
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.28
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.16666666666666663
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.14
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.088
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.28
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.5
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.7
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.88
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.550733304467759
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.44868253968253957
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.4511852654234456
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoSciFact
type: NanoSciFact
metrics:
- type: MaxSim_accuracy@1
value: 0.7
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.82
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.88
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.92
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.7
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.29333333333333333
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.19599999999999998
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.10199999999999998
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.675
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.805
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.88
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.91
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.8042579434791977
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.7707142857142858
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.7705943722943722
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoTouche2020
type: NanoTouche2020
metrics:
- type: MaxSim_accuracy@1
value: 0.7959183673469388
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.9795918367346939
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 1.0
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 1.0
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.7959183673469388
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.7619047619047619
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.6897959183673469
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.5489795918367346
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.054536287361574225
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.15427299614340523
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.2308549805548407
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.3471515583210746
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.629619385239878
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.8894557823129251
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.4616787350016793
name: Maxsim Map@100
- task:
type: nano-beir
name: Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: MaxSim_accuracy@1
value: 0.6550706436420722
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.7815070643642071
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.8415384615384615
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.8953846153846154
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.6550706436420722
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.3852747252747252
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.2976766091051805
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.20407535321821035
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.3931768280118962
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.5299331305821623
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.5985109464051271
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.6717504754237795
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.6612257654240528
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.7318525204953776
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.5828975031847518
name: Maxsim Map@100
---
<center>
<div style="text-align: center;">
<img
src="https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/7_6D7rWrLxp2hb6OHSV1p.png"
alt="Liquid AI"
style="width: 100%; max-width: 66%; height: auto; display: inline-block; margin-bottom: 0.5em; margin-top: 0.5em;"
/>
</div>
<div style="display: flex; justify-content: center;">
<a href="https://playground.liquid.ai/chat">
<svg width="114.8" height="20" viewBox="0 0 900 200" xmlns="http://www.w3.org/2000/svg" role="img" aria-label="Playground" style="margin-bottom: 1em;">
<title>Playground</title>
<g>
<rect fill="#fff" width="200" height="200"></rect>
<rect fill="url(#x)" x="200" width="800" height="200"></rect>
</g>
<g transform="translate(35, 30) scale(0.45, 0.45)">
<path d="M172.314 129.313L172.219 129.367L206.125 188.18C210.671 195.154 213.324 203.457 213.324 212.382C213.324 220.834 210.956 228.739 206.839 235.479L275.924 213.178L167.853 33.6L141.827 76.9614L172.314 129.313Z" fill="black"/>
<path d="M114.217 302.4L168.492 257.003C168.447 257.003 168.397 257.003 168.352 257.003C143.515 257.003 123.385 237.027 123.385 212.387C123.385 203.487 126.023 195.204 130.55 188.24L162.621 132.503L135.966 86.7327L60.0762 213.183L114.127 302.4H114.217Z" fill="black"/>
<path d="M191.435 250.681C191.435 250.681 191.43 250.681 191.425 250.686L129.71 302.4H221.294L267.71 226.593L191.435 250.686V250.681Z" fill="black"/>
</g>
<g transform="translate(50, 0)" aria-hidden="true" fill="#fff" text-anchor="start" font-family="Verdana,DejaVu Sans,sans-serif" font-size="110">
<text x="255" y="148" textLength="619" fill="#000" opacity="0.1">Playground</text>
<text x="245" y="138" textLength="619">Playground</text>
</g>
<linearGradient id="x" x1="0%" y1="0%" x2="100%" y2="0%">
<stop offset="0%" style="stop-color:#000000"></stop>
<stop offset="100%" style="stop-color:#000000"></stop>
</linearGradient>
</svg>
</a>
<a href="https://leap.liquid.ai/?utm_source=huggingface&utm_medium=modelcards">
<svg width="114.8" height="20" viewBox="0 0 900 200" xmlns="http://www.w3.org/2000/svg" role="img" aria-label="Leap" style="margin-bottom: 1em;">
<title>Leap</title>
<g>
<rect fill="#000" width="500" height="200"></rect>
</g>
<g transform="translate(100, 45) scale(3.5, 3.5)" fill="#fff">
<path d="M13.8512 28.0769C12.5435 28.0769 11.4025 27.8205 10.4281 27.3077C9.45375 26.7692 8.68452 26.0128 8.12042 25.0385C7.58196 24.0641 7.31273 22.9359 7.31273 21.6538V3.76923H0.389648V0H11.4666V21.6538C11.4666 22.4744 11.6973 23.1282 12.1589 23.6154C12.6204 24.0769 13.2486 24.3077 14.0435 24.3077H20.582V28.0769H13.8512Z"/>
<path d="M29.6439 28.4615C27.9259 28.4615 26.4131 28.1282 25.1054 27.4615C23.8233 26.7692 22.8362 25.8077 22.1439 24.5769C21.4516 23.3462 21.1054 21.9103 21.1054 20.2692V14.7308C21.1054 13.0641 21.4516 11.6282 22.1439 10.4231C22.8362 9.19231 23.8233 8.24359 25.1054 7.57692C26.4131 6.88462 27.9259 6.53846 29.6439 6.53846C31.3875 6.53846 32.9003 6.88462 34.1823 7.57692C35.4644 8.24359 36.4516 9.19231 37.1439 10.4231C37.8362 11.6282 38.1823 13.0641 38.1823 14.7308V18.5H25.1054V20.2692C25.1054 21.8333 25.49 23.0256 26.2592 23.8462C27.0541 24.6667 28.1951 25.0769 29.6823 25.0769C30.8875 25.0769 31.8618 24.8718 32.6054 24.4615C33.349 24.0256 33.8105 23.3974 33.99 22.5769H38.1054C37.7977 24.3718 36.8746 25.8077 35.3362 26.8846C33.7977 27.9359 31.9003 28.4615 29.6439 28.4615ZM34.1823 16V14.6923C34.1823 13.1538 33.7977 11.9615 33.0285 11.1154C32.2592 10.2692 31.131 9.84615 29.6439 9.84615C28.1823 9.84615 27.0541 10.2692 26.2592 11.1154C25.49 11.9615 25.1054 13.1667 25.1054 14.7308V15.6923L34.49 15.6538L34.1823 16Z"/>
<path d="M46.3596 28.4615C44.1545 28.4615 42.4109 27.8974 41.1288 26.7692C39.8724 25.6154 39.2442 24.0513 39.2442 22.0769C39.2442 20.0769 39.9109 18.5128 41.2442 17.3846C42.6032 16.2308 44.4622 15.6538 46.8211 15.6538H52.7058V13.6923C52.7058 12.5385 52.3468 11.641 51.6288 11C50.9109 10.359 49.8981 10.0385 48.5904 10.0385C47.4365 10.0385 46.475 10.2949 45.7058 10.8077C44.9365 11.2949 44.4878 11.9487 44.3596 12.7692H40.2827C40.5135 10.8718 41.3852 9.35897 42.8981 8.23077C44.4365 7.10256 46.3724 6.53846 48.7058 6.53846C51.2186 6.53846 53.2058 7.17949 54.6673 8.46154C56.1288 9.71795 56.8596 11.4359 56.8596 13.6154V28.0769H52.8211V24.1923H52.1288L52.8211 23.4231C52.8211 24.9615 52.2314 26.1923 51.0519 27.1154C49.8724 28.0128 48.3083 28.4615 46.3596 28.4615ZM47.5904 25.2692C49.0776 25.2692 50.2955 24.8974 51.2442 24.1538C52.2186 23.3846 52.7058 22.4103 52.7058 21.2308V18.4615H46.8981C45.8211 18.4615 44.9622 18.7564 44.3211 19.3462C43.7058 19.9359 43.3981 20.7436 43.3981 21.7692C43.3981 22.8462 43.7699 23.7051 44.5135 24.3462C45.257 24.9615 46.2827 25.2692 47.5904 25.2692Z"/>
<path d="M58.9984 35V6.92308H63.1138V10.9615H63.9984L63.1138 11.9231C63.1138 10.2564 63.6266 8.94872 64.6523 8C65.7036 7.02564 67.101 6.53846 68.8446 6.53846C70.9728 6.53846 72.6651 7.25641 73.9215 8.69231C75.2036 10.1026 75.8446 12.0385 75.8446 14.5V20.4615C75.8446 22.1026 75.5497 23.5256 74.96 24.7308C74.3959 25.9103 73.5882 26.8333 72.5369 27.5C71.5113 28.141 70.2805 28.4615 68.8446 28.4615C67.1266 28.4615 65.742 27.9872 64.6907 27.0385C63.6395 26.0641 63.1138 24.7436 63.1138 23.0769L63.9984 24.0385H63.0369L63.1523 28.9615V35H58.9984ZM67.4215 24.8462C68.7805 24.8462 69.8318 24.4615 70.5754 23.6923C71.3446 22.8974 71.7292 21.7564 71.7292 20.2692V14.7308C71.7292 13.2436 71.3446 12.1154 70.5754 11.3462C69.8318 10.5513 68.7805 10.1538 67.4215 10.1538C66.1138 10.1538 65.0754 10.5641 64.3061 11.3846C63.5369 12.1795 63.1523 13.2949 63.1523 14.7308V20.2692C63.1523 21.7051 63.5369 22.8333 64.3061 23.6538C65.0754 24.4487 66.1138 24.8462 67.4215 24.8462Z"/>
</g>
<linearGradient id="y" x1="0%" y1="0%" x2="100%" y2="0%">
<stop offset="0%" style="stop-color:#000000"></stop>
</linearGradient>
</svg>
</a>
</div>
</center>
# LFM2-ColBERT-350M
LFM2-ColBERT-350M is a late interaction retriever with excellent multilingual performance. It allows you to store documents in one language (for example, a product description in English) and retrieve them in many languages with high accuracy.
- LFM2-ColBERT-350M offers **best-in-class accuracy** across different languages.
- Inference speed is **on par with models 2.3 times smaller**, thanks to the efficient LFM2 backbone.
- You can use it as a **drop-in replacement** in your current RAG pipelines to improve performance.
Find more information about LFM2-ColBERT-350M in our [blog post](http://www.liquid.ai/blog/lfm2-colbert-350m-one-model-to-embed-them-all).
> [!NOTE]
> 🚀 Try our demo: https://huggingface.co/spaces/LiquidAI/LFM2-ColBERT
## 📄 Model details
Late interaction retrievers like LFM2-ColBERT-350M are particularly interesting because they preserve much of the **expressivity** of re-rankers while retaining the **efficiency** of bi-encoders.
In practice, they're used to both retrieve documents at scale (like bi-encoders) and rank them at the same time (like rerankers).

We recommend using this model for various RAG use cases, such as:
- **E-commerce**: Find products across many languages with semantic search at scale.
- **On-device semantic search**: Ask questions to your phone in natural language to retrieve files, emails, and notes.
- **Enterprise knowledge assistants**: Retrieve internal legal, financial, and technical documents in different languages.
| Property | [**LFM2-ColBERT-350M**](https://huggingface.co/LiquidAI/LFM2-ColBERT-350M/) |
| --------------------- | ------------------------------ |
| **Total parameters** | 353,322,752 |
| **Layers** | 25 (18 conv + 6 attn + 1 dense)|
| **Context length** | 32,768 tokens |
| **Vocabulary size** | 65,536 |
| **Training precision**| BF16 |
| **License** | LFM Open License v1.0 |
**Document length:** 512 tokens
**Query length:** 32 tokens
**Output dimensionality:** 128 tokens
**Similarity function:** MaxSim
**Supported languages**: English, Arabic, Chinese, French, German, Japanese, Korean, and Spanish.
```
ColBERT(
(0): Transformer({'max_seq_length': 511, 'do_lower_case': False}) with Transformer model: Lfm2Model
(1): Dense({'in_features': 1024, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
```
## 🏃 How to run
<a href="https://colab.research.google.com/drive/1tXSAXGpjuTvliuTrSSHDEcmIe48uolrD?usp=sharing"><img src="https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/vlOyMEjwHa_b_LXysEu2E.png" width=120 alt="Colab link"></a>
First, install the PyLate and transformers library:
```bash
pip install -U pylate
```
### Retrieval
Use this model with PyLate to index and retrieve documents. The index uses [FastPLAID](https://github.com/lightonai/fast-plaid) for efficient similarity search.
#### Indexing documents
Load LFM2-ColBERT-350M and initialize the PLAID index, then encode and index your documents:
```python
from pylate import indexes, models, retrieve
# Step 1: Load the ColBERT model
model = models.ColBERT(
model_name_or_path="LiquidAI/LFM2-ColBERT-350M",
)
model.tokenizer.pad_token = model.tokenizer.eos_token
# Step 2: Initialize the PLAID index
index = indexes.PLAID(
index_folder="pylate-index",
index_name="index",
override=True, # This overwrites the existing index if any
)
# Step 3: Encode the documents
documents_ids = ["1", "2", "3"]
documents = ["document 1 text", "document 2 text", "document 3 text"]
documents_embeddings = model.encode(
documents,
batch_size=32,
is_query=False, # Ensure that it is set to False to indicate that these are documents, not queries
show_progress_bar=True,
)
# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
index.add_documents(
documents_ids=documents_ids,
documents_embeddings=documents_embeddings,
)
```
Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:
```python
# To load an index, simply instantiate it with the correct folder/name and without overriding it
index = indexes.PLAID(
index_folder="pylate-index",
index_name="index",
)
```
#### Retrieving top-k documents for queries
Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries.
To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:
```python
# Step 1: Initialize the ColBERT retriever
retriever = retrieve.ColBERT(index=index)
# Step 2: Encode the queries
queries_embeddings = model.encode(
["query for document 3", "query for document 1"],
batch_size=32,
is_query=True, # # Ensure that it is set to False to indicate that these are queries
show_progress_bar=True,
)
# Step 3: Retrieve top-k documents
scores = retriever.retrieve(
queries_embeddings=queries_embeddings,
k=10, # Retrieve the top 10 matches for each query
)
```
### Reranking
If you only want to use LFM2-ColBERT-350M to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:
```python
from pylate import rank, models
queries = [
"query A",
"query B",
]
documents = [
["document A", "document B"],
["document 1", "document C", "document B"],
]
documents_ids = [
[1, 2],
[1, 3, 2],
]
model = models.ColBERT(
model_name_or_path="LiquidAI/LFM2-ColBERT-350M",
)
queries_embeddings = model.encode(
queries,
is_query=True,
)
documents_embeddings = model.encode(
documents,
is_query=False,
)
reranked_documents = rank.rerank(
documents_ids=documents_ids,
queries_embeddings=queries_embeddings,
documents_embeddings=documents_embeddings,
)
```
## 📈 Performance
### Accuracy
We extended the NanoBEIR benchmark to include Japanese and Korean languages. We open-sourced this dataset on Hugging Face at [LiquidAI/nanobeir-multilingual-extended](https://huggingface.co/datasets/LiquidAI/nanobeir-multilingual-extended) for reproducibility.
On this NanoBEIR benchmark, LFM2-ColBERT-350M displays significantly stronger multilingual capabilities (especially in German, Arabic, Korean, and Japanese) while maintaining English performance.

Even more interestingly, LFM2-ColBERT-350M is an excellent cross-lingual retriever. This means that it is capable of retrieving documents based on queries from other languages. This is ideal for client-facing applications, like in e-commerce, where a description might be in English but the query is in another language.
LFM2-ColBERT-350M works especially well for English, French, Spanish, Italian, Portuguese, and German, as shown with these NDCG@10 scores on NanoBEIR:
<table style="font-size: 14px;">
<thead>
<tr>
<th style="text-align: left; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">Doc / Query</th>
<th style="text-align: center; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">AR</th>
<th style="text-align: center; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">DE</th>
<th style="text-align: center; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">EN</th>
<th style="text-align: center; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">ES</th>
<th style="text-align: center; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">FR</th>
<th style="text-align: center; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">IT</th>
<th style="text-align: center; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">JA</th>
<th style="text-align: center; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">KO</th>
<th style="text-align: center; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">PT</th>
<th style="text-align: center; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 700;">AVG</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align: left; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">AR</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fad4a6;">0.490</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f5a08c;">0.288</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f8ba98;">0.339</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f6a88f;">0.303</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f6aa90;">0.304</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f59f8b;">0.286</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fac19e;">0.357</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f8ba98;">0.338</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f6a48d;">0.291</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f8ba98; font-weight: 700;">33.30%</td>
</tr>
<tr>
<td style="text-align: left; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">DE</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fde6b8;">0.383</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #c6e8af;">0.563</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #c1e6ad;">0.547</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f4efcd;">0.498</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f8f2d1;">0.502</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f0ebca;">0.489</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fcd6a8;">0.424</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fddcad;">0.368</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #ede8c8;">0.486</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fcf6d5; font-weight: 700;">47.33%</td>
</tr>
<tr>
<td style="text-align: left; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">EN</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fcd9ab;">0.416</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #c3e7ae;">0.554</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #9edf9e;">0.661</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #c6e8af;">0.553</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #cae9b1;">0.551</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #e4eec3;">0.522</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fde3b3;">0.477</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fde0b0;">0.395</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #dbecbd;">0.535</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #d7eabb; font-weight: 700;">51.82%</td>
</tr>
<tr>
<td style="text-align: left; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">ES</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fcd8aa;">0.412</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #e8f0c6;">0.514</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #b0e3a4;">0.578</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #c6e8af;">0.563</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #c1e6ad;">0.547</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #d7eabb;">0.529</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fde0b0;">0.436</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fde0b0;">0.394</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #c1e6ad;">0.547</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #e8f0c6; font-weight: 700;">50.21%</td>
</tr>
<tr>
<td style="text-align: left; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">FR</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fcd7a9;">0.408</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #d7eabb;">0.527</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #b5e4a7;">0.573</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #cae9b1;">0.552</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #c3e7ae;">0.564</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #e0edc0;">0.537</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fee5b5;">0.450</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fddeb0;">0.388</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #c4e7af;">0.549</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #eff2cb; font-weight: 700;">50.53%</td>
</tr>
<tr>
<td style="text-align: left; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">IT</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fde0b0;">0.395</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #e7efc6;">0.512</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #c3e7ae;">0.554</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #dbecbd;">0.535</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #dbecbd;">0.535</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #d2e9b7;">0.543</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fde2b2;">0.439</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fddeaf;">0.386</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #d7eabb;">0.529</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fcf6d5; font-weight: 700;">49.20%</td>
</tr>
<tr>
<td style="text-align: left; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">JA</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fde4b4;">0.375</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fcdaac;">0.365</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fcd6a8;">0.409</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fabf9d;">0.358</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f8b396;">0.345</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f9b697;">0.337</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #cae9b1;">0.557</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #eff2cb;">0.491</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f7b094;">0.330</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fcd3a4; font-weight: 700;">39.63%</td>
</tr>
<tr>
<td style="text-align: left; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">KO</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f7af93;">0.326</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f59f8b;">0.274</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f6ab90;">0.310</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f5a18c;">0.282</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f49c8a;">0.265</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f49d8a;">0.266</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fde1b1;">0.440</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #d7eabb;">0.527</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f49e8b;">0.271</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f6a98f; font-weight: 700;">32.89%</td>
</tr>
<tr>
<td style="text-align: left; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">PT</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fcd6a8;">0.402</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #eff2cb;">0.499</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #c6e8af;">0.558</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #c4e7af;">0.545</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #d7eabb;">0.528</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #d7eabb;">0.529</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fde0b0;">0.436</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fddcad;">0.382</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #c1e6ad;">0.547</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fcf6d5; font-weight: 700;">49.17%</td>
</tr>
<tr>
<td style="text-align: left; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 700;">AVG</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fcd2a3; font-weight: 700;">40.07%</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #feedc1; font-weight: 700;">45.51%</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #e8f0c6; font-weight: 700;">50.32%</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f1eecf; font-weight: 700;">46.54%</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fcf6d5; font-weight: 700;">46.00%</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fee6b6; font-weight: 700;">44.86%</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fee5b5; font-weight: 700;">44.62%</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fcd3a5; font-weight: 700;">40.78%</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #feedbe; font-weight: 700;">45.38%</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0;"></td>
</tr>
</tbody>
</table>
In comparison, GTE-ModernColBERT-v1 consistently gets lower scores when documents and queries are not in the same language:
<table style="font-size: 14px;">
<thead>
<tr>
<th style="text-align: left; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">Doc / Query</th>
<th style="text-align: center; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">AR</th>
<th style="text-align: center; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">DE</th>
<th style="text-align: center; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">EN</th>
<th style="text-align: center; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">ES</th>
<th style="text-align: center; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">FR</th>
<th style="text-align: center; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">IT</th>
<th style="text-align: center; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">JA</th>
<th style="text-align: center; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">KO</th>
<th style="text-align: center; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">PT</th>
<th style="text-align: center; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 700;">AVG</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align: left; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">AR</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f8ba98;">0.309</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f29488;">0.089</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f39789;">0.107</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f29488;">0.089</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f39688;">0.094</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f39588;">0.092</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f18d85;">0.070</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #ef8783;">0.049</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f29488;">0.087</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f39789; font-weight: 700;">10.96%</td>
</tr>
<tr>
<td style="text-align: left; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">DE</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #ef8783;">0.039</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f4efcd;">0.499</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #e7efc6;">0.454</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fbe1b0;">0.362</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fddcad;">0.393</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fce0b0;">0.367</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f6ad91;">0.133</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f08a84;">0.061</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fcdaac;">0.361</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f8ba98; font-weight: 700;">29.65%</td>
</tr>
<tr>
<td style="text-align: left; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">EN</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #ef8783;">0.042</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fddcad;">0.408</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #9edf9e;">0.680</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #e8f0c6;">0.446</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #eff2cb;">0.484</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fcd9ab;">0.420</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f7b295;">0.167</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f18d85;">0.073</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #e8f0c6;">0.438</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fcd6a8; font-weight: 700;">35.08%</td>
</tr>
<tr>
<td style="text-align: left; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">ES</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #ef8783;">0.044</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fce0b0;">0.360</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #eff2cb;">0.485</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #d2e9b7;">0.525</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #e4eec3;">0.465</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #e7efc6;">0.437</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f6ae92;">0.149</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f08a84;">0.061</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #eff2cb;">0.487</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fad19f; font-weight: 700;">33.48%</td>
</tr>
<tr>
<td style="text-align: left; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">FR</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #ef8783;">0.044</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fce1b1;">0.381</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f1eecf;">0.505</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #e7efc6;">0.455</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #c1e6ad;">0.546</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fcd9ab;">0.428</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f6af92;">0.136</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f08983;">0.057</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #e4eec3;">0.467</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fad29f; font-weight: 700;">33.35%</td>
</tr>
<tr>
<td style="text-align: left; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">IT</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #ef8783;">0.043</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fce0b0;">0.369</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #e8f0c6;">0.449</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #e8f0c6;">0.446</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #e7efc6;">0.451</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f0ebca;">0.516</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f6ae92;">0.143</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #ef8883;">0.054</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #e7efc6;">0.448</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fad3a1; font-weight: 700;">32.36%</td>
</tr>
<tr>
<td style="text-align: left; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">JA</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #ef8783;">0.031</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f7b295;">0.169</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f9bc99;">0.250</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f7b295;">0.172</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f7b396;">0.177</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f7b295;">0.169</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #e7efc6;">0.459</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f08983;">0.059</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f6af92;">0.165</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f7b194; font-weight: 700;">18.35%</td>
</tr>
<tr>
<td style="text-align: left; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">KO</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #ef8783;">0.030</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f6ad91;">0.134</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f7b295;">0.169</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f5aa90;">0.127</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f6ad91;">0.133</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f5ab90;">0.125</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f39688;">0.090</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fce0b0;">0.368</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f5a98f;">0.124</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f59f8b; font-weight: 700;">14.45%</td>
</tr>
<tr>
<td style="text-align: left; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 500;">PT</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #ef8783;">0.043</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fcdaac;">0.368</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f1eecf;">0.479</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f4efcd;">0.492</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #e4eec3;">0.467</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #e7efc6;">0.448</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f6af92;">0.138</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f08a84;">0.062</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #d2e9b7;">0.530</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fad29f; font-weight: 700;">33.63%</td>
</tr>
<tr>
<td style="text-align: left; padding: 8px; background: #fafafa; border: 1px solid #e0e0e0; font-weight: 700;">AVG</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f19188; font-weight: 700;">6.94%</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f8ba98; font-weight: 700;">30.84%</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fddcad; font-weight: 700;">39.75%</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fbd8a9; font-weight: 700;">34.59%</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fbdaab; font-weight: 700;">35.68%</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fad29f; font-weight: 700;">33.35%</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f7b396; font-weight: 700;">16.53%</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #f39689; font-weight: 700;">9.37%</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0; background-color: #fbd8a9; font-weight: 700;">34.24%</td>
<td style="text-align: center; padding: 8px; border: 1px solid #e0e0e0;"></td>
</tr>
</tbody>
</table>
This makes retrieval a lot more reliable and can replace architectures with multiple models with a single, unified retriever.
### Inference speed
Despite being more than twice as big, LFM2-ColBERT-350M demonstrates throughput performance on par with GTE-ModernColBERT-v1 for query and document encoding across various batch sizes.
Query encoding was evaluated using realistic query patterns from datasets like MS MARCO and Natural Questions.

Document encoding was measured on realistic documents with varying lengths and domains.

## 📬 Contact
If you are interested in custom solutions with edge deployment, please contact [our sales team](https://www.liquid.ai/contact).
Please cite the PyLate library if you use it for inference or training:
```bibtex
@misc{PyLate,
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
author={Chaffin, Antoine and Sourty, Raphaël},
url={https://github.com/lightonai/pylate},
year={2024}
}
``` |