akkiisfrommars commited on
Commit
58d8e50
·
verified ·
1 Parent(s): 38d2552

CosmicFish Initial commit

Browse files
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright 2025 Mistyoz AI Private Limited
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "cosmicfish",
3
+ "architectures": [
4
+ "CosmicFishForCausalLM"
5
+ ],
6
+ "vocab_size": 50257,
7
+ "n_embd": 704,
8
+ "n_layer": 12,
9
+ "n_head": 16,
10
+ "block_size": 512,
11
+ "bias": true,
12
+ "dropout": 0.1,
13
+ "eps": 1e-06,
14
+ "use_rotary": true,
15
+ "use_swiglu": true,
16
+ "use_gqa": true,
17
+ "use_qk_norm": false,
18
+ "n_query_groups": 4,
19
+ "torch_dtype": "float32",
20
+ "transformers_version": "4.36.0",
21
+ "use_cache": true,
22
+ "pad_token_id": 50256,
23
+ "bos_token_id": 50256,
24
+ "eos_token_id": 50256
25
+ }
example_usage.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Example usage of CosmicFish model
3
+ """
4
+ import torch
5
+ from transformers import GPT2Tokenizer
6
+ from modeling_cosmicfish import CosmicFish, CosmicConfig
7
+ import json
8
+
9
+ def load_cosmicfish(model_dir):
10
+ """Load CosmicFish model and tokenizer"""
11
+ # Load config
12
+ with open(f"{model_dir}/config.json", "r") as f:
13
+ config_dict = json.load(f)
14
+
15
+ # Create CosmicConfig
16
+ config = CosmicConfig(
17
+ vocab_size=config_dict["vocab_size"],
18
+ block_size=config_dict["block_size"],
19
+ n_layer=config_dict["n_layer"],
20
+ n_head=config_dict["n_head"],
21
+ n_embd=config_dict["n_embd"],
22
+ bias=config_dict["bias"],
23
+ dropout=0.0, # Set to 0 for inference
24
+ use_rotary=config_dict["use_rotary"],
25
+ use_swiglu=config_dict["use_swiglu"],
26
+ use_gqa=config_dict["use_gqa"],
27
+ n_query_groups=config_dict["n_query_groups"],
28
+ use_qk_norm=config_dict["use_qk_norm"]
29
+ )
30
+
31
+ # Create model
32
+ model = CosmicFish(config)
33
+
34
+ # Load weights
35
+ state_dict = torch.load(f"{model_dir}/pytorch_model.bin", map_location="cpu")
36
+ model.load_state_dict(state_dict)
37
+ model.eval()
38
+
39
+ # Load tokenizer
40
+ tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
41
+
42
+ return model, tokenizer
43
+
44
+ # Example usage:
45
+ # model, tokenizer = load_cosmicfish("./")
46
+ # input_text = "The future of AI is"
47
+ # inputs = tokenizer.encode(input_text, return_tensors="pt")
48
+ # outputs = model.generate(inputs, max_length=50, temperature=0.7, do_sample=True)
49
+ # response = tokenizer.decode(outputs[0], skip_special_tokens=True)
50
+ # print(response)
modeling_cosmicfish.py ADDED
@@ -0,0 +1,296 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ CosmicFish Model - Inference Only Version
3
+ Minimal implementation for loading and running inference with CosmicFish.
4
+ Removes all training-specific code and optimizations.
5
+ """
6
+
7
+ import math
8
+ import torch
9
+ import torch.nn as nn
10
+ from torch.nn import functional as F
11
+
12
+
13
+ class CosmicConfig:
14
+ """Configuration class for CosmicFish."""
15
+
16
+ def __init__(self,
17
+ vocab_size=50257,
18
+ block_size=512,
19
+ n_layer=12,
20
+ n_head=16,
21
+ n_embd=704,
22
+ bias=True,
23
+ dropout=0.0, # Always 0 for inference
24
+ n_query_groups=4,
25
+ eps=1e-6,
26
+ use_rotary=True,
27
+ use_swiglu=True,
28
+ use_qk_norm=False,
29
+ use_gqa=True):
30
+ self.vocab_size = vocab_size
31
+ self.block_size = block_size
32
+ self.n_layer = n_layer
33
+ self.n_head = n_head
34
+ self.n_embd = n_embd
35
+ self.bias = bias
36
+ self.dropout = dropout
37
+ self.eps = eps
38
+ self.use_rotary = use_rotary
39
+ self.use_swiglu = use_swiglu
40
+ self.use_qk_norm = use_qk_norm
41
+ self.use_gqa = use_gqa
42
+ self.n_query_groups = n_query_groups if use_gqa else n_head
43
+ # Ensure n_head is divisible by n_query_groups
44
+ assert n_head % self.n_query_groups == 0, "n_head must be divisible by n_query_groups"
45
+
46
+
47
+ class RMSNorm(nn.Module):
48
+ """Root Mean Square Normalization"""
49
+
50
+ def __init__(self, dim, eps=1e-6):
51
+ super().__init__()
52
+ self.eps = eps
53
+ self.weight = nn.Parameter(torch.ones(dim))
54
+
55
+ def forward(self, x):
56
+ rms = torch.sqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
57
+ return self.weight * (x / rms)
58
+
59
+
60
+ def precompute_freqs_cis(dim, end, theta=10000.0):
61
+ """Precompute the frequency tensor for complex exponentials (cis)"""
62
+ freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
63
+ t = torch.arange(end, device=freqs.device)
64
+ freqs = torch.outer(t, freqs)
65
+ freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
66
+ return freqs_cis
67
+
68
+
69
+ def apply_rotary_emb(xq, xk, freqs_cis):
70
+ """Apply rotary embeddings to input tensors"""
71
+ xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
72
+ xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
73
+
74
+ seq_len = xq_.size(2)
75
+ if freqs_cis.size(0) < seq_len:
76
+ raise ValueError(f"freqs_cis has only {freqs_cis.size(0)} values but sequence length is {seq_len}")
77
+
78
+ freqs_cis_seq = freqs_cis[:seq_len]
79
+ xq_out = torch.view_as_real(xq_ * freqs_cis_seq.unsqueeze(0)).flatten(3)
80
+ xk_out = torch.view_as_real(xk_ * freqs_cis_seq.unsqueeze(0)).flatten(3)
81
+
82
+ return xq_out.type_as(xq), xk_out.type_as(xk)
83
+
84
+
85
+ class GroupedQueryAttention(nn.Module):
86
+ """Grouped Query Attention (GQA) implementation"""
87
+
88
+ def __init__(self, config):
89
+ super().__init__()
90
+ assert config.n_embd % config.n_head == 0
91
+
92
+ head_dim = config.n_embd // config.n_head
93
+ self.head_dim = head_dim
94
+ self.n_head = config.n_head
95
+ self.n_embd = config.n_embd
96
+ self.n_query_groups = config.n_query_groups
97
+
98
+ self.kv_heads = config.n_head // config.n_query_groups if config.use_gqa else config.n_head
99
+ qkv_proj_size = (config.n_head + 2 * self.kv_heads) * head_dim
100
+
101
+ self.c_attn = nn.Linear(config.n_embd, qkv_proj_size, bias=config.bias)
102
+ self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
103
+
104
+ # Flash attention support
105
+ self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
106
+ if not self.flash:
107
+ self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
108
+ .view(1, 1, config.block_size, config.block_size))
109
+
110
+ # Query-key normalization
111
+ self.qk_norm = getattr(config, 'use_qk_norm', False)
112
+ if self.qk_norm:
113
+ self.q_norm = RMSNorm(head_dim, eps=getattr(config, 'eps', 1e-6))
114
+ self.k_norm = RMSNorm(head_dim, eps=getattr(config, 'eps', 1e-6))
115
+
116
+ def forward(self, x, freqs_cis=None):
117
+ B, T, C = x.size()
118
+ qkv = self.c_attn(x)
119
+ head_dim = C // self.n_head
120
+
121
+ q_size = self.n_head * head_dim
122
+ k_size = self.kv_heads * head_dim
123
+ v_size = self.kv_heads * head_dim
124
+
125
+ q, k, v = qkv.split([q_size, k_size, v_size], dim=2)
126
+
127
+ q = q.view(B, T, self.n_head, head_dim).transpose(1, 2)
128
+ k = k.view(B, T, self.kv_heads, head_dim).transpose(1, 2)
129
+ v = v.view(B, T, self.kv_heads, head_dim).transpose(1, 2)
130
+
131
+ # Repeat k and v if needed for GQA
132
+ if self.kv_heads < self.n_head:
133
+ repeats = self.n_head // self.kv_heads
134
+ k = k.repeat_interleave(repeats, dim=1)
135
+ v = v.repeat_interleave(repeats, dim=1)
136
+
137
+ # Apply rotary embeddings
138
+ if freqs_cis is not None:
139
+ q, k = apply_rotary_emb(q, k, freqs_cis)
140
+
141
+ # Apply query-key normalization
142
+ if self.qk_norm:
143
+ q = self.q_norm(q)
144
+ k = self.k_norm(k)
145
+
146
+ # Compute attention
147
+ if self.flash:
148
+ y = torch.nn.functional.scaled_dot_product_attention(
149
+ q, k, v, attn_mask=None, dropout_p=0.0, is_causal=True
150
+ )
151
+ else:
152
+ att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
153
+ att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
154
+ att = F.softmax(att, dim=-1)
155
+ y = att @ v
156
+
157
+ y = y.transpose(1, 2).contiguous().view(B, T, C)
158
+ y = self.c_proj(y)
159
+ return y
160
+
161
+
162
+ class Block(nn.Module):
163
+ """Transformer block"""
164
+
165
+ def __init__(self, config):
166
+ super().__init__()
167
+ self.ln_1 = RMSNorm(config.n_embd, eps=config.eps)
168
+ self.ln_2 = RMSNorm(config.n_embd, eps=config.eps)
169
+ self.attn = GroupedQueryAttention(config)
170
+
171
+ # MLP implementation based on configuration
172
+ if config.use_swiglu:
173
+ # SwiGLU MLP
174
+ self.mlp = nn.ModuleDict(dict(
175
+ gate=nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias),
176
+ up=nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias),
177
+ down=nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias),
178
+ act=nn.SiLU(),
179
+ ))
180
+ m = self.mlp
181
+ self.mlpf = lambda x: m.down(m.act(m.up(x)) * m.gate(x))
182
+ else:
183
+ # Traditional MLP
184
+ self.mlp = nn.ModuleDict(dict(
185
+ c_fc=nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias),
186
+ c_proj=nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias),
187
+ act=nn.GELU(),
188
+ ))
189
+ m = self.mlp
190
+ self.mlpf = lambda x: m.c_proj(m.act(m.c_fc(x)))
191
+
192
+ def forward(self, x, freqs_cis=None):
193
+ x = x + self.attn(self.ln_1(x), freqs_cis)
194
+ x = x + self.mlpf(self.ln_2(x))
195
+ return x
196
+
197
+
198
+ class CosmicFish(nn.Module):
199
+ """
200
+ CosmicFish model for inference only.
201
+ Features: Rotary Positional Embeddings, Grouped-Query Attention, SwiGLU, RMSNorm
202
+ """
203
+
204
+ def __init__(self, config):
205
+ super().__init__()
206
+ self.config = config
207
+
208
+ self.transformer = nn.ModuleDict(dict(
209
+ wte=nn.Embedding(config.vocab_size, config.n_embd),
210
+ h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
211
+ ln_f=RMSNorm(config.n_embd, eps=config.eps),
212
+ ))
213
+
214
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
215
+
216
+ # Share weights between embedding and output
217
+ self.transformer.wte.weight = self.lm_head.weight
218
+
219
+ # Precompute rotary embedding frequencies
220
+ if config.use_rotary:
221
+ head_dim = config.n_embd // config.n_head
222
+ self.freqs_cis = precompute_freqs_cis(head_dim, config.block_size)
223
+ else:
224
+ self.freqs_cis = None
225
+ self.transformer.wpe = nn.Embedding(config.block_size, config.n_embd)
226
+
227
+ def get_num_params(self, non_embedding=True):
228
+ """Return the number of parameters in the model."""
229
+ n_params = sum(p.numel() for p in self.parameters())
230
+ if non_embedding and hasattr(self.transformer, 'wpe'):
231
+ n_params -= self.transformer.wpe.weight.numel()
232
+ return n_params
233
+
234
+ def forward(self, idx, targets=None):
235
+ """Forward pass through the model."""
236
+ device = idx.device
237
+ b, t = idx.size()
238
+ assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
239
+
240
+ # Get token embeddings
241
+ tok_emb = self.transformer.wte(idx)
242
+
243
+ # Handle positional embeddings
244
+ if self.config.use_rotary:
245
+ x = tok_emb
246
+ freqs_cis = self.freqs_cis.to(device) if self.freqs_cis is not None else None
247
+ else:
248
+ pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0)
249
+ pos_emb = self.transformer.wpe(pos)
250
+ x = tok_emb + pos_emb
251
+ freqs_cis = None
252
+
253
+ # Apply transformer blocks
254
+ for block in self.transformer.h:
255
+ x = block(x, freqs_cis)
256
+
257
+ # Apply final normalization
258
+ x = self.transformer.ln_f(x)
259
+
260
+ # Calculate outputs
261
+ if targets is not None:
262
+ logits = self.lm_head(x)
263
+ loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
264
+ else:
265
+ # For inference, only compute logits for the last token
266
+ logits = self.lm_head(x[:, [-1], :])
267
+ loss = None
268
+
269
+ return logits, loss
270
+
271
+ @torch.no_grad()
272
+ def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
273
+ """
274
+ Generate text by sampling from the model, token by token.
275
+ """
276
+ for _ in range(max_new_tokens):
277
+ # Crop sequence to block size if needed
278
+ idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
279
+
280
+ # Forward pass
281
+ logits, _ = self(idx_cond)
282
+ logits = logits[:, -1, :] / temperature
283
+
284
+ # Apply top-k sampling
285
+ if top_k is not None:
286
+ v, _ = torch.topk(logits, top_k)
287
+ logits[logits < v[:, [-1]]] = -float('Inf')
288
+
289
+ # Sample next token
290
+ probs = F.softmax(logits, dim=-1)
291
+ idx_next = torch.multinomial(probs, num_samples=1)
292
+
293
+ # Append to sequence
294
+ idx = torch.cat((idx, idx_next), dim=1)
295
+
296
+ return idx
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8fdc674e0b6392940633e05bb6dbf6cab45da20ae94af719de462ca50cbbf7d
3
+ size 243512043
tokenizer_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "tokenizer_class": "GPT2Tokenizer",
3
+ "vocab_size": 50257,
4
+ "model_max_length": 512,
5
+ "bos_token": "<|endoftext|>",
6
+ "eos_token": "<|endoftext|>",
7
+ "unk_token": "<|endoftext|>",
8
+ "pad_token": "<|endoftext|>",
9
+ "add_prefix_space": false,
10
+ "do_lower_case": false
11
+ }
vocab_info.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "note": "This model uses GPT-2 tokenizer. Please use: tokenizer = GPT2Tokenizer.from_pretrained('gpt2')",
3
+ "vocab_size": 50257,
4
+ "encoding": "gpt2"
5
+ }