|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch Brumby model.""" |
|
|
|
|
|
from typing import Callable, Optional, Union, Any, Dict, Tuple |
|
|
|
|
|
import torch |
|
|
from torch import nn |
|
|
|
|
|
from transformers.activations import ACT2FN |
|
|
from transformers.cache_utils import Cache, DynamicCache, StaticCache, SlidingWindowCache |
|
|
from transformers.generation import GenerationMixin |
|
|
from transformers.integrations import use_kernel_forward_from_hub |
|
|
from transformers.modeling_attn_mask_utils import AttentionMaskConverter |
|
|
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs |
|
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast |
|
|
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update |
|
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel |
|
|
from transformers.processing_utils import Unpack |
|
|
from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple |
|
|
from transformers.utils.deprecation import deprecate_kwarg |
|
|
from transformers.utils.generic import check_model_inputs |
|
|
from .configuration_brumby import BrumbyConfig |
|
|
|
|
|
|
|
|
try: |
|
|
from retention.triton import power_retention, power_retention_inference |
|
|
from retention._utils import compute_expanded_dim |
|
|
except ImportError: |
|
|
raise ImportError("Retention is required by the Brumby model. Please install it with `pip install retention`.") |
|
|
|
|
|
|
|
|
class PowerAttentionDynamicCache(DynamicCache): |
|
|
""" |
|
|
A dynamic cache that encompasses 2 sets of caches: |
|
|
1. attention cache with a short seq_len (determined by the chunk_size parameter): |
|
|
- key_cache: [batch_size, num_heads, chunk_size, head_dim] |
|
|
- value_cache: [batch_size, num_heads, chunk_size, head_dim] |
|
|
- gating_cache: [batch_size, num_heads, chunk_size] |
|
|
2. fixed-size state-based cache: |
|
|
- state: [batch_size, num_heads, state_dim, head_dim] |
|
|
- sum_of_keys: [batch_size, num_heads, state_dim] |
|
|
|
|
|
where state_dim is determined by the power of expansion for power attention. |
|
|
""" |
|
|
def __init__(self, config: BrumbyConfig, batch_size: int, dtype=torch.bfloat16, device=None): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.batch_size = batch_size |
|
|
self.device = device |
|
|
self.dtype = dtype |
|
|
self.chunk_size = config.chunk_size |
|
|
self.head_dim = config.hidden_size // config.num_attention_heads |
|
|
self.p = config.p |
|
|
self.state_dim = compute_expanded_dim(self.head_dim, deg=self.p) |
|
|
|
|
|
self.states = [None for _ in range(config.num_hidden_layers)] |
|
|
self.sum_of_keys = [None for _ in range(config.num_hidden_layers)] |
|
|
self.key_cache = [torch.tensor([[]] * batch_size, device=device, dtype=dtype) for _ in range(config.num_hidden_layers)] |
|
|
self.value_cache = [torch.tensor([[]] * batch_size, device=device, dtype=dtype) for _ in range(config.num_hidden_layers)] |
|
|
self.gate_cache = [torch.tensor([[]] * batch_size, device=device, dtype=torch.float32) for _ in range(config.num_hidden_layers)] |
|
|
|
|
|
def clean_cache(self, layer_idx: int) -> None: |
|
|
self.key_cache[layer_idx] = torch.tensor([[]] * self.batch_size, device=self.device, dtype=self.dtype) |
|
|
self.value_cache[layer_idx] = torch.tensor([[]] * self.batch_size, device=self.device, dtype=self.dtype) |
|
|
self.gate_cache[layer_idx] = torch.tensor([[]] * self.batch_size, device=self.device, dtype=torch.float32) |
|
|
|
|
|
def update_cache( |
|
|
self, |
|
|
key_states: torch.Tensor, |
|
|
value_states: torch.Tensor, |
|
|
gate_states: torch.Tensor, |
|
|
layer_idx: int, |
|
|
cache_kwargs: Optional[Dict[str, Any]] = None, |
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
|
if self.key_cache[layer_idx].shape[-1] == 0: |
|
|
self.key_cache[layer_idx] = key_states |
|
|
self.value_cache[layer_idx] = value_states |
|
|
self.gate_cache[layer_idx] = gate_states |
|
|
else: |
|
|
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=2) |
|
|
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=2) |
|
|
self.gate_cache[layer_idx] = torch.cat([self.gate_cache[layer_idx], gate_states], dim=2) |
|
|
return self.key_cache[layer_idx], self.value_cache[layer_idx], self.gate_cache[layer_idx], self.states[layer_idx], self.sum_of_keys[layer_idx] |
|
|
|
|
|
def reorder_cache(self, beam_idx: torch.LongTensor): |
|
|
"""Reorders the cache for beam search, given the selected beam indices.""" |
|
|
for layer_idx in range(len(self.key_cache)): |
|
|
device = self.key_cache[layer_idx].device |
|
|
self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device)) |
|
|
device = self.value_cache[layer_idx].device |
|
|
self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device)) |
|
|
device = self.gate_cache[layer_idx].device |
|
|
self.gate_cache[layer_idx] = self.gate_cache[layer_idx].index_select(0, beam_idx.to(device)) |
|
|
device = self.states[layer_idx].device |
|
|
self.states[layer_idx] = self.states[layer_idx].index_select(0, beam_idx.to(device)) |
|
|
device = self.sum_of_keys[layer_idx].device |
|
|
self.sum_of_keys[layer_idx] = self.sum_of_keys[layer_idx].index_select(0, beam_idx.to(device)) |
|
|
|
|
|
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int: |
|
|
"""Returns the sequence length of the cached states. A layer index can be optionally passed.""" |
|
|
|
|
|
if layer_idx is None: |
|
|
layer_idx = 0 |
|
|
if layer_idx >= len(self.key_cache): |
|
|
return 0 |
|
|
|
|
|
if self.key_cache[layer_idx].numel() == 0: |
|
|
return 0 |
|
|
return self.key_cache[layer_idx].shape[-2] |
|
|
|
|
|
def to_legacy_cache(self) -> tuple[tuple[torch.Tensor, torch.Tensor]]: |
|
|
raise NotImplementedError("PowerAttentionDynamicCache does not have a legacy cache equivalent.") |
|
|
|
|
|
@classmethod |
|
|
def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "PowerAttentionDynamicCache": |
|
|
raise NotImplementedError("PowerAttentionDynamicCache does not have a legacy cache equivalent.") |
|
|
|
|
|
def update_state(self, layer_idx: int, new_state: torch.Tensor, new_sum_of_keys: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
self.states[layer_idx] = new_state |
|
|
self.sum_of_keys[layer_idx] = new_sum_of_keys |
|
|
return self.states[layer_idx], self.sum_of_keys[layer_idx] |
|
|
|
|
|
def reset(self): |
|
|
self.states.zero_() |
|
|
self.sum_of_keys.zero_() |
|
|
self.key_cache.zero_() |
|
|
self.value_cache.zero_() |
|
|
self.gate_cache.zero_() |
|
|
|
|
|
|
|
|
|
|
|
@use_kernel_forward_from_hub("RMSNorm") |
|
|
class BrumbyRMSNorm(nn.Module): |
|
|
def __init__(self, hidden_size, eps: float = 1e-6) -> None: |
|
|
""" |
|
|
BrumbyRMSNorm is equivalent to T5LayerNorm |
|
|
""" |
|
|
super().__init__() |
|
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
|
self.variance_epsilon = eps |
|
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
|
input_dtype = hidden_states.dtype |
|
|
hidden_states = hidden_states.to(torch.float32) |
|
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
def extra_repr(self): |
|
|
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" |
|
|
|
|
|
|
|
|
class BrumbyMLP(nn.Module): |
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.hidden_size = config.hidden_size |
|
|
self.intermediate_size = config.intermediate_size |
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
|
|
def forward(self, x): |
|
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
return down_proj |
|
|
|
|
|
|
|
|
def rotate_half(x): |
|
|
"""Rotates half the hidden dims of the input.""" |
|
|
x1 = x[..., : x.shape[-1] // 2] |
|
|
x2 = x[..., x.shape[-1] // 2 :] |
|
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
|
|
Args: |
|
|
q (`torch.Tensor`): The query tensor. |
|
|
k (`torch.Tensor`): The key tensor. |
|
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
|
position_ids (`torch.Tensor`, *optional*): |
|
|
Deprecated and unused. |
|
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
|
Returns: |
|
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
|
""" |
|
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
|
return q_embed, k_embed |
|
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
|
""" |
|
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
|
""" |
|
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
|
if n_rep == 1: |
|
|
return hidden_states |
|
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
|
|
|
def eager_attention_forward( |
|
|
module: nn.Module, |
|
|
query: torch.Tensor, |
|
|
key: torch.Tensor, |
|
|
value: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
scaling: float, |
|
|
dropout: float = 0.0, |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
): |
|
|
key_states = repeat_kv(key, module.num_key_value_groups) |
|
|
value_states = repeat_kv(value, module.num_key_value_groups) |
|
|
|
|
|
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling |
|
|
if attention_mask is not None: |
|
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
|
attn_weights = attn_weights + causal_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) |
|
|
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) |
|
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
|
|
|
class BrumbyAttention(nn.Module): |
|
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
|
|
def __init__(self, config: BrumbyConfig, layer_idx: int): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.layer_idx = layer_idx |
|
|
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) |
|
|
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads |
|
|
self.scaling = self.head_dim**-0.5 |
|
|
self.attention_dropout = config.attention_dropout |
|
|
self.is_causal = True |
|
|
self.use_exp = config.use_exp |
|
|
self.prefill_chunk_size = config.prefill_chunk_size |
|
|
self.chunk_size = config.chunk_size |
|
|
self.switch_over_seq_len = config.switch_over_seq_len |
|
|
|
|
|
self.q_proj = nn.Linear( |
|
|
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias |
|
|
) |
|
|
self.k_proj = nn.Linear( |
|
|
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias |
|
|
) |
|
|
self.v_proj = nn.Linear( |
|
|
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias |
|
|
) |
|
|
self.g_proj = nn.Linear( |
|
|
config.hidden_size, config.num_key_value_heads, bias=config.attention_bias |
|
|
) |
|
|
self.o_proj = nn.Linear( |
|
|
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias |
|
|
) |
|
|
self.q_norm = BrumbyRMSNorm(self.head_dim, eps=config.rms_norm_eps) |
|
|
self.k_norm = BrumbyRMSNorm(self.head_dim, eps=config.rms_norm_eps) |
|
|
self.sliding_window = config.sliding_window if config.layer_types[layer_idx] == "sliding_attention" else None |
|
|
|
|
|
@deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58") |
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
position_embeddings: tuple[torch.Tensor, torch.Tensor], |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
past_key_values: Optional[PowerAttentionDynamicCache] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> tuple[torch.Tensor, Optional[torch.Tensor]]: |
|
|
input_shape = hidden_states.shape[:-1] |
|
|
hidden_shape = (*input_shape, -1, self.head_dim) |
|
|
|
|
|
query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2) |
|
|
key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2) |
|
|
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
gate_states = self.g_proj(hidden_states).view(hidden_shape[:-1]).transpose(1, 2) |
|
|
gate_states = nn.functional.logsigmoid(gate_states.to(torch.float32)) |
|
|
|
|
|
cos, sin = position_embeddings |
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
|
|
if past_key_values is not None: |
|
|
|
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
|
key_states, value_states, gate_states, state, sum_of_keys = past_key_values.update_cache(key_states, value_states, gate_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
if self.use_exp: |
|
|
attention_interface: Callable = eager_attention_forward |
|
|
if self.config._attn_implementation != "eager": |
|
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] |
|
|
|
|
|
attn_output, attn_weights = attention_interface( |
|
|
self, |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
attention_mask, |
|
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
|
scaling=self.scaling, |
|
|
sliding_window=self.sliding_window, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
elif query_states.shape[2] == 1: |
|
|
key_len = key_states.shape[2] |
|
|
attn_output, state, sum_of_keys = power_retention_inference( |
|
|
query_states.transpose(1, 2), |
|
|
key_states.transpose(1, 2), |
|
|
value_states.transpose(1, 2), |
|
|
gate_states.transpose(1, 2), |
|
|
initial_state=state, |
|
|
sum_of_keys=sum_of_keys, |
|
|
deg=2, |
|
|
scale=self.scaling, |
|
|
switch_over_seq_len=self.chunk_size, |
|
|
) |
|
|
if self.chunk_size is not None and key_len >= self.chunk_size: |
|
|
past_key_values.clean_cache(self.layer_idx) |
|
|
past_key_values.update_state(self.layer_idx, state, sum_of_keys) |
|
|
|
|
|
attn_weights = None |
|
|
|
|
|
else: |
|
|
key_len = key_states.shape[2] |
|
|
attn_output = power_retention( |
|
|
query_states.transpose(1, 2), |
|
|
key_states.transpose(1, 2), |
|
|
value_states.transpose(1, 2), |
|
|
gate_states.transpose(1, 2), |
|
|
deg=2, |
|
|
scale=self.scaling, |
|
|
chunk_size=self.prefill_chunk_size, |
|
|
switch_over_seq_len=self.switch_over_seq_len, |
|
|
) |
|
|
attn_weights = None |
|
|
|
|
|
|
|
|
attn_output = attn_output.reshape(*input_shape, -1).contiguous() |
|
|
attn_output = self.o_proj(attn_output) |
|
|
return attn_output, attn_weights |
|
|
|
|
|
|
|
|
class BrumbyDecoderLayer(nn.Module): |
|
|
def __init__(self, config: BrumbyConfig, layer_idx: int): |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
|
|
|
self.self_attn = BrumbyAttention(config=config, layer_idx=layer_idx) |
|
|
|
|
|
self.mlp = BrumbyMLP(config) |
|
|
self.input_layernorm = BrumbyRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.post_attention_layernorm = BrumbyRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.attention_type = config.layer_types[layer_idx] |
|
|
|
|
|
@deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58") |
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
use_cache: Optional[bool] = False, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
) -> torch.Tensor: |
|
|
residual = hidden_states |
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, _ = self.self_attn( |
|
|
hidden_states=hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
position_embeddings=position_embeddings, |
|
|
**kwargs, |
|
|
) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
|
|
|
residual = hidden_states |
|
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
|
hidden_states = self.mlp(hidden_states) |
|
|
hidden_states = residual + hidden_states |
|
|
return hidden_states |
|
|
|
|
|
|
|
|
@auto_docstring |
|
|
class BrumbyPreTrainedModel(PreTrainedModel): |
|
|
config: BrumbyConfig |
|
|
base_model_prefix = "model" |
|
|
supports_gradient_checkpointing = True |
|
|
_no_split_modules = ["BrumbyDecoderLayer"] |
|
|
_skip_keys_device_placement = ["past_key_values"] |
|
|
_supports_flash_attn = True |
|
|
_supports_sdpa = True |
|
|
_supports_flex_attn = True |
|
|
|
|
|
_can_compile_fullgraph = True |
|
|
_supports_attention_backend = True |
|
|
_can_record_outputs = { |
|
|
"hidden_states": BrumbyDecoderLayer, |
|
|
"attentions": BrumbyAttention, |
|
|
} |
|
|
|
|
|
|
|
|
class BrumbyRotaryEmbedding(nn.Module): |
|
|
inv_freq: torch.Tensor |
|
|
|
|
|
def __init__(self, config: BrumbyConfig, device=None): |
|
|
super().__init__() |
|
|
|
|
|
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict): |
|
|
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) |
|
|
else: |
|
|
self.rope_type = "default" |
|
|
self.max_seq_len_cached = config.max_position_embeddings |
|
|
self.original_max_seq_len = config.max_position_embeddings |
|
|
|
|
|
self.config = config |
|
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] |
|
|
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) |
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
self.original_inv_freq = self.inv_freq |
|
|
|
|
|
@torch.no_grad() |
|
|
@dynamic_rope_update |
|
|
def forward(self, x, position_ids): |
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) |
|
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
|
|
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" |
|
|
with torch.autocast(device_type=device_type, enabled=False): |
|
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
|
cos = emb.cos() * self.attention_scaling |
|
|
sin = emb.sin() * self.attention_scaling |
|
|
|
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
|
|
|
@auto_docstring |
|
|
class BrumbyModel(BrumbyPreTrainedModel): |
|
|
def __init__(self, config: BrumbyConfig): |
|
|
super().__init__(config) |
|
|
self.padding_idx = config.pad_token_id |
|
|
self.vocab_size = config.vocab_size |
|
|
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
|
self.layers = nn.ModuleList( |
|
|
[BrumbyDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
|
) |
|
|
self.norm = BrumbyRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.rotary_emb = BrumbyRotaryEmbedding(config=config) |
|
|
self.gradient_checkpointing = False |
|
|
self.has_sliding_layers = "sliding_attention" in self.config.layer_types |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
@check_model_inputs |
|
|
@auto_docstring |
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[PowerAttentionDynamicCache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
) -> BaseModelOutputWithPast: |
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
|
|
if inputs_embeds is None: |
|
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
if use_cache and past_key_values is None: |
|
|
raise ValueError("Brumby requires an initialized `PowerAttentionDynamicCache` to return a cache. None was provided, so no cache will be returned.") |
|
|
|
|
|
if cache_position is None: |
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
|
cache_position = torch.arange( |
|
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
|
) |
|
|
|
|
|
if position_ids is None: |
|
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
|
|
causal_mask = self._update_causal_mask( |
|
|
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions=False |
|
|
) |
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
|
|
|
position_embeddings = self.rotary_emb(hidden_states, position_ids) |
|
|
|
|
|
for decoder_layer in self.layers[: self.config.num_hidden_layers]: |
|
|
hidden_states = decoder_layer( |
|
|
hidden_states, |
|
|
attention_mask=causal_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
position_embeddings=position_embeddings, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
return BaseModelOutputWithPast( |
|
|
last_hidden_state=hidden_states, |
|
|
past_key_values=past_key_values if use_cache else None, |
|
|
) |
|
|
|
|
|
def _update_causal_mask( |
|
|
self, |
|
|
attention_mask: torch.Tensor, |
|
|
input_tensor: torch.Tensor, |
|
|
cache_position: torch.Tensor, |
|
|
past_key_values: Cache, |
|
|
output_attentions: bool = False, |
|
|
): |
|
|
if self.config._attn_implementation == "flash_attention_2": |
|
|
if attention_mask is not None and past_key_values is not None: |
|
|
is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0] |
|
|
if is_padding_right: |
|
|
raise ValueError( |
|
|
"You are attempting to perform batched generation with padding_side='right'" |
|
|
" this may lead to unexpected behaviour for Flash Attention version of Qwen3. Make sure to " |
|
|
" call `tokenizer.padding_side = 'left'` before tokenizing the input. " |
|
|
) |
|
|
if attention_mask is not None and 0.0 in attention_mask: |
|
|
return attention_mask |
|
|
return None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
|
using_static_cache = isinstance(past_key_values, StaticCache) |
|
|
using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache) |
|
|
|
|
|
|
|
|
if ( |
|
|
self.config._attn_implementation == "sdpa" |
|
|
and not (using_static_cache or using_sliding_window_cache) |
|
|
and not output_attentions |
|
|
): |
|
|
if AttentionMaskConverter._ignore_causal_mask_sdpa( |
|
|
attention_mask, |
|
|
inputs_embeds=input_tensor, |
|
|
past_key_values_length=past_seen_tokens, |
|
|
sliding_window=self.config.sliding_window, |
|
|
is_training=self.training, |
|
|
): |
|
|
return None |
|
|
|
|
|
dtype, device = input_tensor.dtype, input_tensor.device |
|
|
min_dtype = torch.finfo(dtype).min |
|
|
sequence_length = input_tensor.shape[1] |
|
|
|
|
|
if using_sliding_window_cache or using_static_cache: |
|
|
target_length = past_key_values.get_max_cache_shape() |
|
|
|
|
|
else: |
|
|
target_length = ( |
|
|
attention_mask.shape[-1] |
|
|
if isinstance(attention_mask, torch.Tensor) |
|
|
else past_seen_tokens + sequence_length + 1 |
|
|
) |
|
|
|
|
|
|
|
|
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( |
|
|
attention_mask, |
|
|
sequence_length=sequence_length, |
|
|
target_length=target_length, |
|
|
dtype=dtype, |
|
|
device=device, |
|
|
cache_position=cache_position, |
|
|
batch_size=input_tensor.shape[0], |
|
|
config=self.config, |
|
|
past_key_values=past_key_values, |
|
|
) |
|
|
|
|
|
if ( |
|
|
self.config._attn_implementation == "sdpa" |
|
|
and attention_mask is not None |
|
|
and attention_mask.device.type in ["cuda", "xpu"] |
|
|
and not output_attentions |
|
|
): |
|
|
|
|
|
|
|
|
|
|
|
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) |
|
|
|
|
|
return causal_mask |
|
|
|
|
|
@staticmethod |
|
|
def _prepare_4d_causal_attention_mask_with_cache_position( |
|
|
attention_mask: torch.Tensor, |
|
|
sequence_length: int, |
|
|
target_length: int, |
|
|
dtype: torch.dtype, |
|
|
device: torch.device, |
|
|
cache_position: torch.Tensor, |
|
|
batch_size: int, |
|
|
config: BrumbyConfig, |
|
|
past_key_values: Cache, |
|
|
): |
|
|
""" |
|
|
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape |
|
|
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. |
|
|
|
|
|
Args: |
|
|
attention_mask (`torch.Tensor`): |
|
|
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. |
|
|
sequence_length (`int`): |
|
|
The sequence length being processed. |
|
|
target_length (`int`): |
|
|
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. |
|
|
dtype (`torch.dtype`): |
|
|
The dtype to use for the 4D attention mask. |
|
|
device (`torch.device`): |
|
|
The device to place the 4D attention mask on. |
|
|
cache_position (`torch.Tensor`): |
|
|
Indices depicting the position of the input sequence tokens in the sequence. |
|
|
batch_size (`torch.Tensor`): |
|
|
Batch size. |
|
|
config (`Qwen3Config`): |
|
|
The model's configuration class |
|
|
past_key_values (`Cache`): |
|
|
The cache class that is being used currently to generate |
|
|
""" |
|
|
if attention_mask is not None and attention_mask.dim() == 4: |
|
|
|
|
|
causal_mask = attention_mask |
|
|
else: |
|
|
min_dtype = torch.finfo(dtype).min |
|
|
causal_mask = torch.full( |
|
|
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device |
|
|
) |
|
|
diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) |
|
|
if config.sliding_window is not None: |
|
|
|
|
|
|
|
|
if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length: |
|
|
sliding_attend_mask = torch.arange(target_length, device=device) <= ( |
|
|
cache_position.reshape(-1, 1) - config.sliding_window |
|
|
) |
|
|
diagonal_attend_mask.bitwise_or_(sliding_attend_mask) |
|
|
causal_mask *= diagonal_attend_mask |
|
|
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) |
|
|
if attention_mask is not None: |
|
|
causal_mask = causal_mask.clone() |
|
|
if attention_mask.shape[-1] > target_length: |
|
|
attention_mask = attention_mask[:, :target_length] |
|
|
mask_length = attention_mask.shape[-1] |
|
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( |
|
|
causal_mask.device |
|
|
) |
|
|
padding_mask = padding_mask == 0 |
|
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( |
|
|
padding_mask, min_dtype |
|
|
) |
|
|
return causal_mask |
|
|
|
|
|
|
|
|
@auto_docstring |
|
|
class BrumbyForCausalLM(BrumbyPreTrainedModel, GenerationMixin): |
|
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
_tp_plan = {"lm_head": "colwise_rep"} |
|
|
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])} |
|
|
|
|
|
def __init__(self, config): |
|
|
super().__init__(config) |
|
|
self.model = BrumbyModel(config) |
|
|
self.vocab_size = config.vocab_size |
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def prepare_inputs_for_generation( |
|
|
self, |
|
|
input_ids, |
|
|
past_key_values=None, |
|
|
attention_mask=None, |
|
|
inputs_embeds=None, |
|
|
cache_position=None, |
|
|
position_ids=None, |
|
|
use_cache=True, |
|
|
**kwargs, |
|
|
): |
|
|
|
|
|
|
|
|
empty_past_kv = past_key_values is None |
|
|
|
|
|
|
|
|
if not isinstance(past_key_values, PowerAttentionDynamicCache): |
|
|
past_key_values = PowerAttentionDynamicCache(self.config, input_ids.shape[0], self.dtype, device=self.device) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if not empty_past_kv: |
|
|
if ( |
|
|
inputs_embeds is not None |
|
|
or cache_position[-1] >= input_ids.shape[1] |
|
|
): |
|
|
input_ids = input_ids[:, -cache_position.shape[0] :] |
|
|
elif input_ids.shape[1] != cache_position.shape[0]: |
|
|
input_ids = input_ids[:, cache_position] |
|
|
else: |
|
|
past_key_values = PowerAttentionDynamicCache( |
|
|
self.config, input_ids.shape[0], self.dtype, device=self.device |
|
|
) |
|
|
|
|
|
if attention_mask is not None and position_ids is None: |
|
|
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
|
if not empty_past_kv: |
|
|
position_ids = position_ids[:, -input_ids.shape[1] :] |
|
|
|
|
|
|
|
|
if inputs_embeds is not None and empty_past_kv: |
|
|
|
|
|
|
|
|
if input_ids is not None and inputs_embeds.shape[1] < input_ids.shape[1]: |
|
|
new_token_embeds = self.get_input_embeddings()(input_ids[:,inputs_embeds.shape[1]:]) |
|
|
inputs_embeds = torch.cat([inputs_embeds, new_token_embeds], dim=1) |
|
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
|
else: |
|
|
model_inputs = {"input_ids": input_ids.contiguous()} |
|
|
|
|
|
model_inputs.update( |
|
|
{ |
|
|
"position_ids": position_ids, |
|
|
"past_key_values": past_key_values, |
|
|
"use_cache": use_cache, |
|
|
"attention_mask": attention_mask, |
|
|
"cache_position": cache_position, |
|
|
} |
|
|
) |
|
|
return model_inputs |
|
|
|
|
|
@can_return_tuple |
|
|
@auto_docstring |
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[PowerAttentionDynamicCache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
logits_to_keep: Union[int, torch.Tensor] = 0, |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
) -> CausalLMOutputWithPast: |
|
|
r""" |
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
|
|
Example: |
|
|
|
|
|
```python |
|
|
>>> from transformers import AutoTokenizer, BrumbyForCausalLM |
|
|
|
|
|
>>> model = BrumbyForCausalLM.from_pretrained("Qwen/Brumby-8B") |
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Brumby-8B") |
|
|
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?" |
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
|
|
>>> # Generate |
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." |
|
|
```""" |
|
|
outputs: BaseModelOutputWithPast = self.model( |
|
|
input_ids=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
inputs_embeds=inputs_embeds, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
hidden_states = outputs.last_hidden_state |
|
|
|
|
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep |
|
|
logits = self.lm_head(hidden_states[:, slice_indices, :]) |
|
|
|
|
|
loss = None |
|
|
if labels is not None: |
|
|
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) |
|
|
|
|
|
return CausalLMOutputWithPast( |
|
|
loss=loss, |
|
|
logits=logits, |
|
|
past_key_values=outputs.past_key_values, |
|
|
hidden_states=outputs.hidden_states, |
|
|
attentions=outputs.attentions, |
|
|
) |
|
|
|
|
|
|
|
|
__all__ = [ |
|
|
"BrumbyForCausalLM", |
|
|
"BrumbyPreTrainedModel", |
|
|
"BrumbyModel", |
|
|
] |
|
|
|