File size: 14,898 Bytes
659c6ab 28ed419 659c6ab 28ed419 8647152 659c6ab 28ed419 f63f68a 01751ae f63f68a 28ed419 86fb648 28ed419 4717e35 3a7cc6f 4d04422 3a7cc6f 28ed419 a6d9af8 28ed419 7fafea9 28ed419 ffcb003 28ed419 659c6ab 28ed419 86fb648 28ed419 659c6ab a6d9af8 3a4fc8d a6d9af8 28ed419 3a4fc8d 659c6ab 28ed419 3a4fc8d 659c6ab a6d9af8 659c6ab 3a4fc8d 28ed419 3a4fc8d 659c6ab 28ed419 97a7960 28ed419 a93c655 fed7ccd 97a7960 28ed419 97a7960 28ed419 a93c655 28ed419 a93c655 28ed419 a93c655 28ed419 a93c655 659c6ab a93c655 fed7ccd 4d04422 fed7ccd a93c655 3927c6f a93c655 fd226f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
---
license: cc-by-nc-4.0
base_model:
- Qwen/Qwen3-14B
- google/siglip2-so400m-patch16-384
library_name: transformers
tags:
- multimodal
- conversational
- ncsoft
- ncai
- varco
pipeline_tag: image-text-to-text
language:
- en
- ko
---
# VARCO-VISION-2.0-14B
<div align="center">
<img src="./varco-vision.png" width="100%" style="background-color:white; padding:10px;" />
</div>
## Introduction
**VARCO-VISION-2.0** is a multimodal AI model capable of understanding both images and text to answer user queries. It supports multi-image inputs, enabling effective processing of complex content such as documents, tables, and charts. The model demonstrates strong comprehension in both Korean and English, with significantly improved text generation capabilities and a deeper understanding of Korean cultural context. Compared to its predecessor, performance has been notably enhanced across various benchmarks, and its usability in real-world scenarios—such as everyday Q&A and information summarization—has also improved.
In addition to the 14B full-scale model, a lightweight 1.7B version is available for on-device use, making it accessible on personal devices such as smartphones and PCs. VARCO-VISION-2.0 is a powerful open-weight AI model built for Korean users and is freely available for a wide range of applications.
## 🚨News🎙️
- 📝 2025-09-12: We published the technical report of VARCO-VISION-2.0 at [link](https://arxiv.org/abs/2509.10105)
- 🛠️ 2025-08-22: We updated the checkpoint of VARCO-VISION-2.0-1.7B for improved performance.
- 📰 2025-07-28: We released VARCO-VISION-2.0-1.7B-OCR at [link](https://huggingface.co/NCSOFT/VARCO-VISION-2.0-1.7B-OCR)
- 📰 2025-07-28: We released VARCO-VISION-2.0-1.7B at [link](https://huggingface.co/NCSOFT/VARCO-VISION-2.0-1.7B)
- 🛠️ 2025-07-18: We updated the checkpoint of VARCO-VISION-2.0-14B for improved performance.
- 📰 2025-07-16: We released VARCO-VISION-2.0-14B at [link](https://huggingface.co/NCSOFT/VARCO-VISION-2.0-14B)
- 📰 2025-07-16: We released GME-VARCO-VISION-Embedding at [link](https://huggingface.co/NCSOFT/GME-VARCO-VISION-Embedding)
## Key Features
- **Multi-image Understanding**: Newly added support for multi-image inputs enables the model to analyze multiple images simultaneously and make more holistic and context-aware decisions.
- **Korean Language Specialization**: The model is further specialized for Korean, with a deeper understanding of Korean language, context, and culture. Korean text generation has been significantly improved, resulting in more natural, fluent, and accurate responses.
- **OCR with Text Localization**: Unlike typical models that only recognize and generate text from images, VARCO-VISION-2.0 can also identify the position of the text and provide bounding boxes around it. This makes it especially useful for document understanding, signage interpretation, and structured visual data.
- **Enhanced Safety**: The model now offers improved handling of harmful or sexually explicit content, ensuring safer and more reliable interactions.
<div align="center">
<img src="./figure.png" width="100%" />
</div>
## VARCO-VISION-2.0 Family
| Model Name | Base Models (Vision / Language) | HF Link |
| :------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------: |
| VARCO-VISION-2.0-14B | [siglip2-so400m-patch16-384](https://huggingface.co/google/siglip2-so400m-patch16-384) / [Qwen3-14B ](https://huggingface.co/Qwen/Qwen3-14B) | [link](https://huggingface.co/NCSOFT/VARCO-VISION-2.0-14B) |
| VARCO-VISION-2.0-1.7B | [siglip2-so400m-patch16-384](https://huggingface.co/google/siglip2-so400m-patch16-384) / [Qwen3-1.7B](https://huggingface.co/Qwen/Qwen3-1.7B) | [link](https://huggingface.co/NCSOFT/VARCO-VISION-2.0-1.7B) |
| VARCO-VISION-2.0-1.7B-OCR | [siglip2-so400m-patch16-384](https://huggingface.co/google/siglip2-so400m-patch16-384) / [Qwen3-1.7B](https://huggingface.co/Qwen/Qwen3-1.7B) | [link](https://huggingface.co/NCSOFT/VARCO-VISION-2.0-1.7B-OCR) |
| GME-VARCO-VISION-Embedding | [Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) | [link](https://huggingface.co/NCSOFT/GME-VARCO-VISION-Embedding) |
## Model Architecture
VARCO-VISION-2.0 follows the architecture of [LLaVA-OneVision](https://arxiv.org/abs/2408.03326).
## Evaluation
We used [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) for evaluation whenever possible, and conducted our own implementations only for benchmarks not supported by the toolkit, **ensuring fair comparisons** with various open-weight models.
Please note that for certain benchmarks involving LLM-based evaluation (e.g., LLaVABench), results may not be exactly reproducible due to variations in the underlying LLM behavior.
### Korean Benchmark
| Benchmark | InternVL3-14B | Ovis2-16B | Qwen2.5-VL-7B | VARCO-VISION-2.0-14B |
| :-----------: | :-----------: | :-------: | :-----------: | :------------------: |
| K-MMBench_DEV | **89.1** | 86.0 | 84.7 | *87.7* |
| K-MMStar | **64.9** | 29.7 | 49.3 | *63.6* |
| K-SEED | **78.2** | 73.2 | 75.7 | 77.2 |
| K-LLaVA-W | 80.9 | 86.3 | *94.1* | **96.5** |
| K-DTCBench | *87.9* | 81.7 | 82.1 | 78.3 |
| ***AVERAGE*** | *80.2* | 71.4 | 77.2 | **80.7** |
### English Benchmark
| Benchmark | InternVL3-14B | Ovis2-16B | Qwen2.5-VL-7B | VARCO-VISION-2.0-14B |
| :-------------: | :-----------: | :-------: | :-----------: | :------------------: |
| MMStar | **68.9** | *67.2* | 64.1 | 66.9 |
| MMMU_VAL | **64.8** | 60.7 | 58.0 | *61.9* |
| MathVista | **74.4** | *73.7* | 68.1 | 73.2 |
| OCRBench | 87.7 | *87.9* | **88.8** | 86.9 |
| AI2D | *86.0* | **86.3** | 84.3 | 85.7 |
| HallusionBench | *55.9* | **56.8** | 51.9 | 53.2 |
| MMVet | **80.5** | 68.4 | *69.7* | 68.9 |
| SEEDBench_IMG | 77.5 | *77.7* | 77.0 | **78.0** |
| LLaVABench | 84.4 | **93.0** | *91.0* | 90.2 |
| RealWorldQA | 69.8 | *74.1* | 68.4 | **74.6** |
| POPE | **89.4** | 87.5 | 85.9 | *89.2* |
| ScienceQA_TEST | **98.6** | 95.2 | 89.0 | 93.5 |
| SEEDBench2_Plus | 70.1 | **72.1** | 70.7 | *71.9* |
| BLINK | **59.9** | *59.0* | 55.3 | 54.5 |
| TextVQA_VAL | 82.2 | *83.0* | **85.4** | 80.4 |
| ChartQA_TEST | **87.8** | 79.1 | 80.6 | *84.2* |
| Q-Bench1_VAL | 76.5 | *79.2* | 78.2 | **79.9** |
| A-Bench_VAL | 76.3 | **79.6** | 75.4 | *79.5* |
| DocVQA_TEST | 94.1 | *94.9* | **95.7** | 90.9 |
| InfoVQA_TEST | **83.6** | *82.8* | 82.6 | 80.4 |
| ***AVERAGE*** | **78.4** | *77.9* | 76.0 | 77.2 |
### Text-only Benchmark
| Benchmark | InternVL3-14B | Ovis2-16B | Qwen2.5-VL-7B | VARCO-VISION-2.0-14B |
| :-----------: | :-----------: | :-------: | :-----------: | :------------------: |
| MMLU | **78.5** | *78.4* | 4.6 | 77.9 |
| MT-Bench | *89.3* | 85.9 | 80.7 | **89.8** |
| KMMLU | 51.4 | 49.3 | 39.6 | *57.5* |
| KoMT-Bench | 70.1 | **79.1** | 68.4 | *78.3* |
| LogicKor | 70.0 | **79.4** | 65.5 | *74.0* |
| ***AVERAGE*** | 71.9 | *74.4* | 51.7 | **75.5** |
> **Note:** Some models show unusually low performance on the MMLU benchmark. This is primarily due to their failure to correctly follow the expected output format when only few-shot exemplars are provided in the prompts. Please take this into consideration when interpreting the results.
### Korean Cultural Benchmark
| Benchmark | InternVL3-14B | Ovis2-16B | Qwen2.5-VL-7B | VARCO-VISION-2.0-14B |
| :--------------: | :-----------: | :-------: | :-----------: | :------------------: |
| K-Viscuit | 71.7 | **77.0** | 70.9 | 73.7 |
| PangeaBench (ko) | *77.2* | *76.9* | 76.6 | 74.5 |
| ***AVERAGE*** | *74.5* | **77.0** | 73.8 | 74.1 |
### OCR Benchmark
| Benchmark | PaddleOCR | EasyOCR | VARCO-VISION-2.0-14B |
| :-----------: | :-------: | :-----: | :------------------: |
| CORD | *91.4* | 77.8 | **97.1** |
| ICDAR2013 | *92.0* | 85.0 | **95.7** |
| ICDAR2015 | *73.7* | 57.9 | **79.4** |
| ***AVERAGE*** | *85.7* | 73.6 | **90.7** |
## Usage
To use this model, we recommend installing `transformers` version **4.53.1 or higher**. While it may work with earlier versions, using **4.53.1 or above is strongly recommended**, especially to ensure optimal performance for the **multi-image feature**.
The basic usage is **identical to** [LLaVA-OneVision](https://huggingface.co/docs/transformers/main/en/model_doc/llava_onevision#usage-example):
```python
import torch
from transformers import AutoProcessor, LlavaOnevisionForConditionalGeneration
model_name = "NCSOFT/VARCO-VISION-2.0-14B"
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
model_name,
torch_dtype=torch.float16,
attn_implementation="sdpa",
device_map="auto",
)
processor = AutoProcessor.from_pretrained(model_name)
conversation = [
{
"role": "user",
"content": [
{"type": "image", "url": "https://huggingface.co/NCSOFT/VARCO-VISION-2.0-14B/resolve/main/demo.jpg"},
{"type": "text", "text": "각 박스마다 한 줄씩 색상과 글자를 정확하게 출력해주세요."},
],
},
]
inputs = processor.apply_chat_template(
conversation,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(model.device, torch.float16)
generate_ids = model.generate(**inputs, max_new_tokens=1024)
generate_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generate_ids)
]
output = processor.decode(generate_ids_trimmed[0], skip_special_tokens=True)
print(output)
```
<details>
<summary>Multi image inference</summary>
```python
conversation = [
{
"role": "user",
"content": [
{"type": "image", "image": "file:///path/to/image1.jpg"},
{"type": "image", "image": "file:///path/to/image2.jpg"},
{"type": "text", "text": "이미지 간의 유사점을 파악하세요."},
],
},
]
inputs = processor.apply_chat_template(
conversation,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(model.device, torch.float16)
generate_ids = model.generate(**inputs, max_new_tokens=1024)
generate_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generate_ids)
]
output = processor.decode(generate_ids_trimmed[0], skip_special_tokens=True)
print(output)
```
</details>
<details>
<summary>Batch inference</summary>
All inputs in a batch must have the same modality structure—for example, text-only with text-only, single-image with single-image, and multi-image with multi-image—to ensure correct batch inference.
```python
conversation_1 = [
{
"role": "user",
"content": [
{"type": "image", "image": "file:///path/to/image1.jpg"},
{"type": "text", "text": "이미지를 설명해주세요."},
],
},
]
conversation_2 = [
{
"role": "user",
"content": [
{"type": "image", "image": "file:///path/to/image2.jpg"},
{"type": "text", "text": "이 이미지에 표시된 것은 무엇인가요?"},
],
},
]
inputs = processor.apply_chat_template(
[conversation_1, conversation_2],
add_generation_prompt=True,
tokenize=True,
return_dict=True,
padding=True,
return_tensors="pt"
).to(model.device, torch.float16)
generate_ids = model.generate(**inputs, max_new_tokens=1024)
generate_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generate_ids)
]
output = processor.batch_decode(generate_ids_trimmed, skip_special_tokens=True)
print(output)
```
</details>
<details>
<summary>OCR inference</summary>
```python
from PIL import Image
image = Image.open("file:///path/to/image.jpg")
# Image upscaling for OCR performance boost
w, h = image.size
target_size = 2304
if max(w, h) < target_size:
scaling_factor = target_size / max(w, h)
new_w = int(w * scaling_factor)
new_h = int(h * scaling_factor)
image = image.resize((new_w, new_h))
conversation = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": "<ocr>"},
],
},
]
inputs = processor.apply_chat_template(
conversation,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(model.device, torch.float16)
generate_ids = model.generate(**inputs, max_new_tokens=1024)
generate_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generate_ids)
]
output = processor.decode(generate_ids_trimmed[0], skip_special_tokens=False)
print(output)
```
</details>
## Citation
```bibtex
@misc{cha2025varcovision20technicalreport,
title={VARCO-VISION-2.0 Technical Report},
author={Young-rok Cha and Jeongho Ju and SunYoung Park and Jong-Hyeon Lee and Younghyun Yu and Youngjune Kim},
year={2025},
eprint={2509.10105},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2509.10105},
}
```
|